切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 175 -179. doi: 10.3877/cma.j.issn.2095-123X.2023.03.008

综述

缺血性脑卒中与外周免疫应答的研究进展
任香凝, 郑晓明()   
  1. 021008 呼伦贝尔,内蒙古民族大学呼伦贝尔临床医学院·呼伦贝尔市人民医院神经内科
  • 收稿日期:2022-06-01 出版日期:2023-06-15
  • 通信作者: 郑晓明

Research progress of ischemic stroke and peripheral immune response

Xiangning Ren, Xiaoming Zheng()   

  1. Department of Neurology, Hulun Buir Clinical Medical College of Inner Mongolia Minzu University, Hulun Buir People's Hospital, Hulun Buir 021008, China
  • Received:2022-06-01 Published:2023-06-15
  • Corresponding author: Xiaoming Zheng
引用本文:

任香凝, 郑晓明. 缺血性脑卒中与外周免疫应答的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 175-179.

Xiangning Ren, Xiaoming Zheng. Research progress of ischemic stroke and peripheral immune response[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(03): 175-179.

缺血性脑卒中(IS)是脑卒中最常见的类型,约占70%~80%。IS起病急,脑组织可在短时间内缺血缺氧性坏死,造成梗死灶累及功能区出现严重的临床表现,不仅使患者生活质量下降,严重者可威胁生命。外周免疫应答在IS的整个发病过程中发挥着关键的调控作用,中性粒细胞、中性粒细胞胞外诱捕网(NETs)、调节性T细胞(Tregs)以及补体系统都与IS的发生和发展密切相关。本文主要阐述了中性粒细胞、NETs、Tregs和补体系统在IS中的作用机制以及IS的炎症反应机制,发掘潜在的IS治疗靶点,为IS治疗提供新的研究方向。

Ischemic stroke (IS) is the most common type of stroke, accounting for about 70%-80%. The onset of IS is abrupt, and the brain tissue undergoes ischemic and hypoxic necrosis in a short period of time, resulting in severe clinical manifestations in the functional areas involved in the infarction, which not only reduces the quality of life of patients, but also threatens life in severe cases. The peripheral immune response plays a key regulatory role in the entire pathogenesis of IS. Neutrophils, neutrophil extracellular traps (NETs), regulatory T cells (Tregs) and the complement system are closely related to the occurrence and development of IS. This paper mainly expounds the mechanism of neutrophils, NETs, Tregs and complement system in IS and the inflammatory response mechanism of IS. All these mechanisms may become potential therapeutic targets for IS in the future, providing research directions for the treatment of IS in the future.

图1 Tregs在缺血性脑卒中早期神经保护作用部分机制
Fig.1 Partial mechanism of neuroprotective effect of Tregs in early ischemic stroke
[1]
《中国脑卒中防治报告》编写组.《中国脑卒中防治报告2020》概要[J].中国脑血管病杂志, 2022, 19(2): 136-144. DOI: 10.3969/j.issn.1672-5921.2022.02.011.
[2]
Muhammad S, Chaudhry SR, Kahlert UD, et al. Brain immune interactions-novel emerging options to treat acute ischemic brain injury[J]. Cells, 2021, 10(9): 2429. DOI: 10.3390/cells10092429.
[3]
李斌,周宇,马勇,等. Toll样受体4相关信号通路在缺血性脑卒中炎症损伤中的研究进展[J].中华神经医学杂志, 2023, 22(2): 205-211. DOI: 10.3760/cma.j.cn115354-20220706-00473.
[4]
Yu H, Cai Y, Zhong A, et al. The "Dialogue" between central and peripheral immunity after ischemic stroke: focus on spleen[J]. Front Immunol, 2021, 12: 792522. DOI: 10.3389/fimmu.2021.792522.
[5]
Anrather J, Iadecola C. Inflammation and stroke: an overview[J]. Neurotherapeutics, 2016, 13(4): 661-670. DOI: 10.1007/s13311-016-0483-x.
[6]
王铎燚,王艳玲.白细胞计数及其亚型对急性缺血性脑卒中预后预测价值的研究进展[J].中华脑科疾病与康复杂志(电子版), 2020, 10(1): 44-47. DOI: 10.3877/cma.j.issn.2095-123X.2020.01.010.
[7]
Ma Y, Yang S, He Q, et al. The role of immune cells in post-stroke angiogenesis and neuronal remodeling: the known and the unknown[J]. Front Immunol, 2021, 12: 784098. DOI: 10.3389/fimmu.2021.784098.
[8]
Galvao I, Queiroz CM, Oliveira VLS, et al. The inhibition of phosphoinositide-3 kinases induce resolution of inflammation in a gout model[J]. Front Pharmacol, 2019, 7(9): 1505. DOI: 10.3389/fphar.2018.01505.eCollection2018.
[9]
包华,赵秀杰,郑晓明.缺血性脑血管病危险因素研究进展[J].中国实用神经疾病杂志, 2012, 15(24): 84-85. DOI: 10.3969/j.issn.1673-5110.2012.24.048.
[10]
Amin-Hanjani S, See AP, Du X, et al. Natural history of hemodynamics in vertebrobasilar disease: temporal changes in the VERiTAS study cohort[J]. Stroke, 2020, 51(11): 3295-3301. DOI: 10.1161/STROKEAHA.120.029909.
[11]
Mohamud Yusuf A, Hagemann N, Ludewig P, et al. Roles of polymorphonuclear neutrophils in ischemic brain injury and post-ischemic brain remodeling[J]. Front Immunol, 2021, 12: 825572. DOI: 10.3389/fimmu.2021.825572.
[12]
Cai W, Liu SX, Hu MY, et al. Functional dynamics of neutrophils after ischemic stroke[J]. Transl Stroke Res, 2020, 11(1): 108-121. DOI: 10.1007/s12975-019-00694-y.
[13]
Han TL, Tang HF, Lin CP, et al. Extracellular traps and the role in thrombosis[J]. Front Cardiovasc Med, 2022, 9: 951670. DOI: 10.3389/fcvm.2022.951670.
[14]
黄远翔,李文硕,徐文婷,等.中性粒细胞胞外杀菌网络与急性缺血性卒中炎性反应及危险因素关系的研究进展[J].中国脑血管病杂志, 2021, 18(11): 800-803. DOI: 10.3969/j.issn.1672-5921.2021.11.010.
[15]
Kim SW, Lee HB, Lee HK, et al. Neutrophil extracellular trap induced by HMGB-1 exacerbates damages in the ischemic brain[J]. Acta Neuropathol Commun, 2019, 7(1): 94. DOI: 10.1186/s40478-019-0747-x.
[16]
Wang RR, Zhu YB, Liu ZW, et al. Neutrophil extracellular traps promote tPA induced brain hemorrhage via cGAS in mice with stroke[J]. Blood, 2021, 138(1): 91-103. DOI: 10.1182/blood.2020008913.
[17]
Laridan E, Denorme F, Desender L, et al. Neutrophil extracellular traps in ischemic stroke thrombi[J]. Ann Neurol, 2017, 82(2): 223-232. DOI: 10.1002/ana.24993.
[18]
Zhou P, Li T, Jin JQ, et al. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion[J]. EBioMedicine, 2020, 53: 102671. DOI: 10.1016/j.ebiom.2020.102671.
[19]
Peña-Martínez C, Durán-Laforet V, García-Culebras A, et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance[J]. Stroke, 2019, 50(11): 3228-3237. DOI: 10.1161/STROKEAHA.119.026848.
[20]
Campbell RA, Campbell HD, Bircher JS, et al. Placental HTRA1 cleaves α1-antitrypsin to generate a NET-inhibitory peptide[J]. Blood, 2021, 138(11): 977-988. DOI: 10.1182/blood.2020009021.
[21]
Denorme F, Portier I, Rustad JL, et al. Neutrophil extracellular traps regulate ischemic stroke brain injury[J]. J Clin Invest, 2022, 132(10): e154225. DOI: 10.1172/JCI154225.
[22]
Panduro M, Benoist C, Mathis D, et al. Tissue tregs[J]. Annu Rev Immunol, 2016, 34: 609-633. DOI: 10.1146/annurev-immunol-032712-095948.
[23]
Ito M, Komai K, Nakamura T, et al. Tissue regulatory T cells and neuralrepair[J]. Int Immunol, 2019, 31(6): 361-369. DOI: 10.1093/intimm/dxz031.
[24]
Weinberg SE, Singer BD. Toward a paradigm to distinguish distinct functions of Foxp3 regulatory T cells[J]. Immunohorizons, 2021, 5(12): 944-952. DOI: 10.4049/immunohorizons.2100046.
[25]
Rajendeeran A, Tenbrock K. Regulatory T cell function in autoimmune disease[J]. J Transl Autoimmun, 2021, 4: 100130. DOI: 10.1016/j.jtauto.2021.100130.
[26]
Zhang D, Ren J, Luo Y, et al. T cell response in ischemic stroke: from mechanisms to translational insights[J]. Front Immunol, 2021, 12: 707972. DOI: 10.3389/fimmu.2021.707972.
[27]
Wang H, Wang Z, Wu Q, et al. Regulatory T cells in ischemic stroke[J]. CNS Neurosci Ther, 2021, 27(6): 643-651. DOI: 10.1111/CNS.13611.
[28]
Sun Y, Tan J, Miao YY, et al. The role of PD-L1 in the immune dysfunction that mediates hypoxia-induced multiple organ injury[J]. Cell Commun Signal, 2021, 19: 76. DOI: 10.1186/s12964-021-00742-x.
[29]
Li PY, Wang L, Zhou YX, et al. C-C chemokine receptor type 5 (CCR5)-mediated docking of transferred tregs protects against early blood-brain barrier disruption after stroke[J]. J Am Heart Assoc, 2017, 6(8): e006387. DOI: 10.1161/JAHA.117.006387.
[30]
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics[J]. Nat Rev Neurol, 2020, 16(11): 601-617. DOI: 10.1038/s41582-020-0400-0.
[31]
Clarke AR, Christophe BR, Khahera A, et al. Therapeutic modulation of the complement cascade in stroke[J]. Front Immunol, 2019, 10: 1723. DOI: 10.3389/fimmu.2019.01723.
[32]
王强,钱文忠.补体C1q与缺血性脑卒中的相关性分析[J].临床医学研究与实践, 2019, 4(18): 88-89. DOI: 10.19347/j.cnki.2096-1413.201918036.
[33]
Ma Y, Liu Y, Zhang Z, et al. Significance of complement system in ischemic stroke: a comprehensive review[J]. Aging Dis, 2019, 10(2): 429-462. DOI: 10.14336/AD.2019.0119.
[34]
Park YG, Park YS, Kim IB. Complement system and potential therapeutics in age-related macular degeneration[J]. Int J Mol Sci, 2021, 22(13): 6851. DOI: 10.3390/IJMS22136851.
[35]
Gu RF, Fang T, Nelson A, et al. Proteomic characterization of the dynamics of ischemic stroke in mice[J]. J Proteome Res, 2021, 20(7): 3689-3700. DOI: 10.1021/acs.jproteome.1c00259.
[36]
Yang P, Zhu Z, Zang Y, et al. Increased serum complement C3 levels are associated with adverse clinical outcomes after ischemic stroke[J]. Stroke, 2021, 52(3): 868-877. DOI: 10.1161/STROKEAHA.120.031715.
[37]
赵军,晏沐阳,宋宏彬,等.补体C4d在小鼠脑缺血再灌注损伤中的沉积和意义[J].中华老年心脑血管病杂志, 2013, 15(6): 637-639. DOI: 10.3969/j.issn.1009-0126.2013.06.024.
[38]
Alawieh A, Elvington A, Tomlinson S. Complement in the homeostatic and ischemic brain[J]. Front Immunol, 2015, 6: 417. DOI: 10.3389/fimmu.2015.00417.
[39]
Zhang B, Yang N, Gao C, et al. Is plasma C3 and C4 levels useful in young cerebral ischemic stroke patients? Associations with prognosis at 3 months[J]. J Thromb Thrombolysis, 2014, 39: 209. DOI: 10.1007/s11239-014-1100-7.
[40]
Zhang XM, Yin J, Shao K, et al. High serum complement component C4 as a unique predictor of unfavorable outcomes in diabetic stroke[J]. Metab Brain Dis, 2021, 36(8): 2313-2322. DOI: 10.1007/s11011-021-00834-0.
[41]
Ziabska K, Ziemka-Nalecz M, Pawelec P, et al. Aberrant complement system activation in neurological disorders[J]. Int J Mol Sci, 2021, 22(9): 4675. DOI: 10.3390/IJMS22094675.
[42]
Alawieh A, Andersen M, Adkins DeAL, et al. Acute complement inhibition potentiates neurorehabilitation and enhances tPA-mediated neuroprotection[J]. Neurosci, 2018, 38(29): 6527-6545. DOI: 10.1523/JNEUROSCI.0111-18.2018.
[43]
Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice[J]. Sci Transl Med, 2018, 10(441): eaao6459. DOI: 10.1126/scitranslmed.aao6459.
[44]
Llovera G, Hofmann K, Roth S, et al. Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia[J]. Sci Transl Med, 2015, 7(299): 299ra121. DOI: 10.1126/scitranslmed.aaa9853.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 张琴琴, 王俊楠, 林厚民, 伍莹, 谭月梅, 李明洲, 金俊飞, 王宁霞, 洪勇. 补体3在乳腺癌中的表达差异及临床意义的生物信息学分析[J]. 中华普通外科学文献(电子版), 2023, 17(04): 271-277.
[3] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[4] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[5] 陈淑钿, 梁韵, 廖媛, 王杨. 补体C3在HBV相关慢加急性肝衰竭患者预后评估中的价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 562-566.
[6] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[7] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[8] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
[9] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
[10] 邓颖, 黄山, 胡慧秀, 孙超. 老年缺血性脑卒中患者危险因素聚集情况分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 344-349.
[11] 史静, 郝晨曦, 何苗, 李伟荣. 昼夜节律与沉默信息调节因子1在缺血性脑卒中神经保护中的相互作用研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 154-158.
[12] 王晖, 张淑娟, 周宝华, 杨琼, 罗永梅. 基于卒中单元的缺血性脑卒中静脉溶栓模式的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 150-153.
[13] 邱佳敏, 蒋惠怡, 陶涛. 丹参酮ⅡA治疗急性缺血性脑卒中动物模型效果的Meta分析[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 136-144.
[14] 黎丹丹, 程峙娟, 刘旭, 陈未平, 殷敏, 郭华, 涂江龙. 急性后循环进展性缺血性卒中患者血管内治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 112-123.
[15] 俞刘珍雄, 张康睿, 杨若蕊, 刘学春, 王龙, 吴竹青, 吴君仓. 维生素D水平与接受静脉溶栓治疗的缺血性卒中患者预后的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 94-101.
阅读次数
全文


摘要