切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 175 -179. doi: 10.3877/cma.j.issn.2095-123X.2023.03.008

综述

缺血性脑卒中与外周免疫应答的研究进展
任香凝, 郑晓明()   
  1. 021008 呼伦贝尔,内蒙古民族大学呼伦贝尔临床医学院·呼伦贝尔市人民医院神经内科
  • 收稿日期:2022-06-01 出版日期:2023-06-15
  • 通信作者: 郑晓明

Research progress of ischemic stroke and peripheral immune response

Xiangning Ren, Xiaoming Zheng()   

  1. Department of Neurology, Hulun Buir Clinical Medical College of Inner Mongolia Minzu University, Hulun Buir People's Hospital, Hulun Buir 021008, China
  • Received:2022-06-01 Published:2023-06-15
  • Corresponding author: Xiaoming Zheng
引用本文:

任香凝, 郑晓明. 缺血性脑卒中与外周免疫应答的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 175-179.

Xiangning Ren, Xiaoming Zheng. Research progress of ischemic stroke and peripheral immune response[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(03): 175-179.

缺血性脑卒中(IS)是脑卒中最常见的类型,约占70%~80%。IS起病急,脑组织可在短时间内缺血缺氧性坏死,造成梗死灶累及功能区出现严重的临床表现,不仅使患者生活质量下降,严重者可威胁生命。外周免疫应答在IS的整个发病过程中发挥着关键的调控作用,中性粒细胞、中性粒细胞胞外诱捕网(NETs)、调节性T细胞(Tregs)以及补体系统都与IS的发生和发展密切相关。本文主要阐述了中性粒细胞、NETs、Tregs和补体系统在IS中的作用机制以及IS的炎症反应机制,发掘潜在的IS治疗靶点,为IS治疗提供新的研究方向。

Ischemic stroke (IS) is the most common type of stroke, accounting for about 70%-80%. The onset of IS is abrupt, and the brain tissue undergoes ischemic and hypoxic necrosis in a short period of time, resulting in severe clinical manifestations in the functional areas involved in the infarction, which not only reduces the quality of life of patients, but also threatens life in severe cases. The peripheral immune response plays a key regulatory role in the entire pathogenesis of IS. Neutrophils, neutrophil extracellular traps (NETs), regulatory T cells (Tregs) and the complement system are closely related to the occurrence and development of IS. This paper mainly expounds the mechanism of neutrophils, NETs, Tregs and complement system in IS and the inflammatory response mechanism of IS. All these mechanisms may become potential therapeutic targets for IS in the future, providing research directions for the treatment of IS in the future.

图1 Tregs在缺血性脑卒中早期神经保护作用部分机制
Fig.1 Partial mechanism of neuroprotective effect of Tregs in early ischemic stroke
[1]
《中国脑卒中防治报告》编写组.《中国脑卒中防治报告2020》概要[J].中国脑血管病杂志, 2022, 19(2): 136-144. DOI: 10.3969/j.issn.1672-5921.2022.02.011.
[2]
Muhammad S, Chaudhry SR, Kahlert UD, et al. Brain immune interactions-novel emerging options to treat acute ischemic brain injury[J]. Cells, 2021, 10(9): 2429. DOI: 10.3390/cells10092429.
[3]
李斌,周宇,马勇,等. Toll样受体4相关信号通路在缺血性脑卒中炎症损伤中的研究进展[J].中华神经医学杂志, 2023, 22(2): 205-211. DOI: 10.3760/cma.j.cn115354-20220706-00473.
[4]
Yu H, Cai Y, Zhong A, et al. The "Dialogue" between central and peripheral immunity after ischemic stroke: focus on spleen[J]. Front Immunol, 2021, 12: 792522. DOI: 10.3389/fimmu.2021.792522.
[5]
Anrather J, Iadecola C. Inflammation and stroke: an overview[J]. Neurotherapeutics, 2016, 13(4): 661-670. DOI: 10.1007/s13311-016-0483-x.
[6]
王铎燚,王艳玲.白细胞计数及其亚型对急性缺血性脑卒中预后预测价值的研究进展[J].中华脑科疾病与康复杂志(电子版), 2020, 10(1): 44-47. DOI: 10.3877/cma.j.issn.2095-123X.2020.01.010.
[7]
Ma Y, Yang S, He Q, et al. The role of immune cells in post-stroke angiogenesis and neuronal remodeling: the known and the unknown[J]. Front Immunol, 2021, 12: 784098. DOI: 10.3389/fimmu.2021.784098.
[8]
Galvao I, Queiroz CM, Oliveira VLS, et al. The inhibition of phosphoinositide-3 kinases induce resolution of inflammation in a gout model[J]. Front Pharmacol, 2019, 7(9): 1505. DOI: 10.3389/fphar.2018.01505.eCollection2018.
[9]
包华,赵秀杰,郑晓明.缺血性脑血管病危险因素研究进展[J].中国实用神经疾病杂志, 2012, 15(24): 84-85. DOI: 10.3969/j.issn.1673-5110.2012.24.048.
[10]
Amin-Hanjani S, See AP, Du X, et al. Natural history of hemodynamics in vertebrobasilar disease: temporal changes in the VERiTAS study cohort[J]. Stroke, 2020, 51(11): 3295-3301. DOI: 10.1161/STROKEAHA.120.029909.
[11]
Mohamud Yusuf A, Hagemann N, Ludewig P, et al. Roles of polymorphonuclear neutrophils in ischemic brain injury and post-ischemic brain remodeling[J]. Front Immunol, 2021, 12: 825572. DOI: 10.3389/fimmu.2021.825572.
[12]
Cai W, Liu SX, Hu MY, et al. Functional dynamics of neutrophils after ischemic stroke[J]. Transl Stroke Res, 2020, 11(1): 108-121. DOI: 10.1007/s12975-019-00694-y.
[13]
Han TL, Tang HF, Lin CP, et al. Extracellular traps and the role in thrombosis[J]. Front Cardiovasc Med, 2022, 9: 951670. DOI: 10.3389/fcvm.2022.951670.
[14]
黄远翔,李文硕,徐文婷,等.中性粒细胞胞外杀菌网络与急性缺血性卒中炎性反应及危险因素关系的研究进展[J].中国脑血管病杂志, 2021, 18(11): 800-803. DOI: 10.3969/j.issn.1672-5921.2021.11.010.
[15]
Kim SW, Lee HB, Lee HK, et al. Neutrophil extracellular trap induced by HMGB-1 exacerbates damages in the ischemic brain[J]. Acta Neuropathol Commun, 2019, 7(1): 94. DOI: 10.1186/s40478-019-0747-x.
[16]
Wang RR, Zhu YB, Liu ZW, et al. Neutrophil extracellular traps promote tPA induced brain hemorrhage via cGAS in mice with stroke[J]. Blood, 2021, 138(1): 91-103. DOI: 10.1182/blood.2020008913.
[17]
Laridan E, Denorme F, Desender L, et al. Neutrophil extracellular traps in ischemic stroke thrombi[J]. Ann Neurol, 2017, 82(2): 223-232. DOI: 10.1002/ana.24993.
[18]
Zhou P, Li T, Jin JQ, et al. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion[J]. EBioMedicine, 2020, 53: 102671. DOI: 10.1016/j.ebiom.2020.102671.
[19]
Peña-Martínez C, Durán-Laforet V, García-Culebras A, et al. Pharmacological modulation of neutrophil extracellular traps reverses thrombotic stroke tPA (tissue-type plasminogen activator) resistance[J]. Stroke, 2019, 50(11): 3228-3237. DOI: 10.1161/STROKEAHA.119.026848.
[20]
Campbell RA, Campbell HD, Bircher JS, et al. Placental HTRA1 cleaves α1-antitrypsin to generate a NET-inhibitory peptide[J]. Blood, 2021, 138(11): 977-988. DOI: 10.1182/blood.2020009021.
[21]
Denorme F, Portier I, Rustad JL, et al. Neutrophil extracellular traps regulate ischemic stroke brain injury[J]. J Clin Invest, 2022, 132(10): e154225. DOI: 10.1172/JCI154225.
[22]
Panduro M, Benoist C, Mathis D, et al. Tissue tregs[J]. Annu Rev Immunol, 2016, 34: 609-633. DOI: 10.1146/annurev-immunol-032712-095948.
[23]
Ito M, Komai K, Nakamura T, et al. Tissue regulatory T cells and neuralrepair[J]. Int Immunol, 2019, 31(6): 361-369. DOI: 10.1093/intimm/dxz031.
[24]
Weinberg SE, Singer BD. Toward a paradigm to distinguish distinct functions of Foxp3 regulatory T cells[J]. Immunohorizons, 2021, 5(12): 944-952. DOI: 10.4049/immunohorizons.2100046.
[25]
Rajendeeran A, Tenbrock K. Regulatory T cell function in autoimmune disease[J]. J Transl Autoimmun, 2021, 4: 100130. DOI: 10.1016/j.jtauto.2021.100130.
[26]
Zhang D, Ren J, Luo Y, et al. T cell response in ischemic stroke: from mechanisms to translational insights[J]. Front Immunol, 2021, 12: 707972. DOI: 10.3389/fimmu.2021.707972.
[27]
Wang H, Wang Z, Wu Q, et al. Regulatory T cells in ischemic stroke[J]. CNS Neurosci Ther, 2021, 27(6): 643-651. DOI: 10.1111/CNS.13611.
[28]
Sun Y, Tan J, Miao YY, et al. The role of PD-L1 in the immune dysfunction that mediates hypoxia-induced multiple organ injury[J]. Cell Commun Signal, 2021, 19: 76. DOI: 10.1186/s12964-021-00742-x.
[29]
Li PY, Wang L, Zhou YX, et al. C-C chemokine receptor type 5 (CCR5)-mediated docking of transferred tregs protects against early blood-brain barrier disruption after stroke[J]. J Am Heart Assoc, 2017, 6(8): e006387. DOI: 10.1161/JAHA.117.006387.
[30]
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics[J]. Nat Rev Neurol, 2020, 16(11): 601-617. DOI: 10.1038/s41582-020-0400-0.
[31]
Clarke AR, Christophe BR, Khahera A, et al. Therapeutic modulation of the complement cascade in stroke[J]. Front Immunol, 2019, 10: 1723. DOI: 10.3389/fimmu.2019.01723.
[32]
王强,钱文忠.补体C1q与缺血性脑卒中的相关性分析[J].临床医学研究与实践, 2019, 4(18): 88-89. DOI: 10.19347/j.cnki.2096-1413.201918036.
[33]
Ma Y, Liu Y, Zhang Z, et al. Significance of complement system in ischemic stroke: a comprehensive review[J]. Aging Dis, 2019, 10(2): 429-462. DOI: 10.14336/AD.2019.0119.
[34]
Park YG, Park YS, Kim IB. Complement system and potential therapeutics in age-related macular degeneration[J]. Int J Mol Sci, 2021, 22(13): 6851. DOI: 10.3390/IJMS22136851.
[35]
Gu RF, Fang T, Nelson A, et al. Proteomic characterization of the dynamics of ischemic stroke in mice[J]. J Proteome Res, 2021, 20(7): 3689-3700. DOI: 10.1021/acs.jproteome.1c00259.
[36]
Yang P, Zhu Z, Zang Y, et al. Increased serum complement C3 levels are associated with adverse clinical outcomes after ischemic stroke[J]. Stroke, 2021, 52(3): 868-877. DOI: 10.1161/STROKEAHA.120.031715.
[37]
赵军,晏沐阳,宋宏彬,等.补体C4d在小鼠脑缺血再灌注损伤中的沉积和意义[J].中华老年心脑血管病杂志, 2013, 15(6): 637-639. DOI: 10.3969/j.issn.1009-0126.2013.06.024.
[38]
Alawieh A, Elvington A, Tomlinson S. Complement in the homeostatic and ischemic brain[J]. Front Immunol, 2015, 6: 417. DOI: 10.3389/fimmu.2015.00417.
[39]
Zhang B, Yang N, Gao C, et al. Is plasma C3 and C4 levels useful in young cerebral ischemic stroke patients? Associations with prognosis at 3 months[J]. J Thromb Thrombolysis, 2014, 39: 209. DOI: 10.1007/s11239-014-1100-7.
[40]
Zhang XM, Yin J, Shao K, et al. High serum complement component C4 as a unique predictor of unfavorable outcomes in diabetic stroke[J]. Metab Brain Dis, 2021, 36(8): 2313-2322. DOI: 10.1007/s11011-021-00834-0.
[41]
Ziabska K, Ziemka-Nalecz M, Pawelec P, et al. Aberrant complement system activation in neurological disorders[J]. Int J Mol Sci, 2021, 22(9): 4675. DOI: 10.3390/IJMS22094675.
[42]
Alawieh A, Andersen M, Adkins DeAL, et al. Acute complement inhibition potentiates neurorehabilitation and enhances tPA-mediated neuroprotection[J]. Neurosci, 2018, 38(29): 6527-6545. DOI: 10.1523/JNEUROSCI.0111-18.2018.
[43]
Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice[J]. Sci Transl Med, 2018, 10(441): eaao6459. DOI: 10.1126/scitranslmed.aao6459.
[44]
Llovera G, Hofmann K, Roth S, et al. Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia[J]. Sci Transl Med, 2015, 7(299): 299ra121. DOI: 10.1126/scitranslmed.aaa9853.
[1] 刘欢, 邢皓, 常正奇, 张记. 机械敏感性离子通道蛋白Piezo1在感染相关疾病中的研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 263-269.
[2] 陈金业, 凌潜龙, 朱冰, 骆杰. 补体B因子在结直肠癌中的表达及临床意义[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 192-198.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 梅杰, 徐瑞, 蔡芸, 朱一超. 纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 257-263.
[5] 张杰, 田广磊, 陈雄. 基于生物信息学分析探讨肝癌BRD4与预后关系及其ceRNA调控网络构建[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 568-576.
[6] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[7] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[8] 张阳, 罗莎莎, 邹文军. 年龄相关性黄斑变性分子机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 240-246.
[9] 杨金朔, 吴桥伟, 王春雷, 史怀璋. 脑血管内支架成形术后再狭窄的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 174-179.
[10] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[11] 吉莉, 苏云楠, 王斌, 沈滔, 刘团结, 毛蕾, 徐玉萍, 张婷, 王博. 急性缺血性脑卒中患者脑白质微结构改变对长期认知功能损伤的预测价值研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 193-200.
[12] 尹晓晴, 赵子萱, 杨帆, 敖峰, 林勇. D型人格与前循环急性缺血性脑卒中患者预后的相关性[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 206-211.
[13] 杨麦青, 张云香. 胃癌化疗后浆膜腔大B细胞淋巴瘤一例报道并文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 183-187.
[14] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
[15] 唐欣, 翟文海, 王润婷, 周胜宇, 靳航. 补体在缺血性卒中疾病中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 382-392.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?