切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 180 -184. doi: 10.3877/cma.j.issn.2095-123X.2023.03.009

综述

迷走神经电刺激术治疗神经系统疾病的应用进展
吴绍伟()   
  1. 230011 合肥市第二人民医院(安徽医科大学附属合肥医院)康复医学科
  • 收稿日期:2022-09-23 出版日期:2023-06-15
  • 通信作者: 吴绍伟

Recent advance in clinical application of vagus nerve stimulation in improving neurological disorders

Shaowei Wu()   

  1. Department of Rehabilitation Medicine, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei 230011, China
  • Received:2022-09-23 Published:2023-06-15
  • Corresponding author: Shaowei Wu
  • Supported by:
    The Natural Science Foundation of Bengbu Medical College(2022byzd198)
引用本文:

吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.

Shaowei Wu. Recent advance in clinical application of vagus nerve stimulation in improving neurological disorders[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(03): 180-184.

迷走神经电刺激术(VNS)是一种新兴的神经调控技术,在治疗癫痫方面安全有效。此外,关于VNS在神经系统其他领域的应用也有深入研究。VNS可引起大脑神经递质的改变,发挥抗癫痫作用,抑制神经系统炎症反应,有效降低患者的抑郁症状。本文主要探讨VNS常用的方法,并综述VNS在各种神经系统疾病的临床应用、疗效及其相关机制,以期为VNS的临床应用提供理论依据。

Vagus nerve stimulation (VNS) is an emerging technique in the field of neuroscience for nerve regulation. It has been approved as a safe and effective method to treat epilepsy. Currently, research in other areas of the nervous system is also advancing. Studies have shown that VNS can alter brain neurotransmitters, resulting in an anti-epileptic effect. It can also inhibit inflammatory reactions in the nervous system and effectively alleviate depressive symptoms in patients. This paper describes the common methods of VNS and reviews the therapeutic effects and related mechanisms of VNS on various neurological disorders, in order to provide a theoretical basis for the clinical application of VNS.

[1]
黎晓程,梁玲艳,韦懿宸,等.经皮耳迷走神经刺激术改善认知功能障碍的中枢神经调节机制研究进展[J].中华神经医学杂志, 2023, 22(2): 184-188. DOI: 10.3760/cma.j.cn115354-20220602-00389.
[2]
赵伟伟,张守成,王柳清,等.迷走神经电刺激治疗难治性癫癎的机制[J].现代电生理学杂志, 2018, 25(4): 224-228. DOI: 10.3969/j.issn.1672-0458.2018.04.009.
[3]
Thompson SL, O'Leary GH, Austelle CW, et al. A review of parameter settings for invasive and non-invasive vagus nerve stimulation (VNS) applied in neurological and psychiatric disorders[J]. Front Neurosci, 2021, 15: 709436. DOI: 10.3389/fnins.2021.709436.
[4]
Frangos E, Komisaruk BR. Access to vagal projections via cutaneous electrical stimulation of the neck: fMRI evidence in healthy humans[J]. Brain Stimul, 2017, 10(1): 19-27. DOI: 10.1016/j.brs.2016.10.008.
[5]
Redgrave J, Day D, Leung H, et al. Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review[J]. Brain Stimul, 2018, 11(6): 1225-1238. DOI: 10.1016/j.brs.2018.08.010.
[6]
Badran BW, Brown JC, Dowdle LT, et al. Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS)[J]. Brain Stimul, 2018, 11(4): 947-948. DOI: 10.1016/j.brs.2018.06.003.
[7]
Badran BW, Dowdle LT, Mithoefer OJ, et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review[J]. Brain Stimul, 2018, 11(3): 492-500. DOI: 10.1016/j.brs.2017.12.009.
[8]
Kaniusas E, Kampusch S, Tittgemeyer M, et al. Current directions in the auricular vagus nerve stimulation II - an engineering perspective[J]. Front Neurosci, 2019, 13: 772. DOI: 10.3389/fnins.2019.00772.
[9]
Mertens A, Raedt R, Gadeyne S, et al. Recent advances in devices for vagus nerve stimulation[J]. Expert Rev Med Devices, 2018, 15(8): 527-539. DOI: 10.1080/17434440.2018.1507732.
[10]
Stefan H, Kreiselmeyer G, Kerling F, et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial[J]. Epilepsia, 2012, 53(7): e115-e118. DOI: 10.1111/j.1528-1167.2012.03492.x.
[11]
Aihua L, Lu S, Liping L, et al. A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy[J]. Epilepsy Behav, 2014, 39: 105-110. DOI: 10.1016/j.yebeh.2014.08.005.
[12]
He W, Jing X, Wang X, et al. Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial[J]. Epilepsy Behav, 2013, 28(3): 343-346. DOI: 10.1016/j.yebeh.2013.02.001.
[13]
Rong P, Liu A, Zhang J, et al. Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial[J]. Clin Sci (Lond), 2014, online ahead of print. DOI: 10.1042/CS20130518.
[14]
Bauer S, Baier H, Baumgartner C, et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02)[J]. Brain Stimul, 2016, 9(3): 356-363. DOI: 10.1016/j.brs.2015.11.003.
[15]
Barbella G, Cocco I, Freri E, et al. Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy[J]. Seizure, 2018, 60: 115-119. DOI: 10.1016/j.seizure.2018.06.016.
[16]
Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation[J]. Epilepsia, 1992, 33(6): 1005-1012. DOI: 10.1111/j.1528-1157.1992.tb01751.x.
[17]
Panebianco M, Zavanone C, Dupont S, et al. Vagus nerve stimulation therapy in partial epilepsy: a review[J]. Acta Neurol Belg, 2016, 116(3): 241-248. DOI: 10.1007/s13760-016-0616-3.
[18]
Marrosu F, Serra A, Maleci A, et al. Correlation between GABA (A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy[J]. Epilepsy Res, 2003, 55(1-2): 59-70. DOI: 10.1016/s0920-1211(03)00107-4.
[19]
Henry TR, Votaw JR, Pennell PB, et al. Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy[J]. Neurology, 1999, 52(6): 1166-1173. DOI: 10.1212/wnl.52.6.1166.
[20]
Panebianco M, Zavanone C, Dupont S, et al. Vagus nerve stimulation therapy in partial epilepsy: a review[J]. Acta Neurol Belg, 2016, 116(3): 241-248. DOI: 10.1007/s13760-016-0616-3.
[21]
Krahl SE, Clark KB. Vagus nerve stimulation for epilepsy: a review of central mechanisms[J]. Surg Neurol Int, 2012, 3(Suppl 4): S255-S259. DOI: 10.4103/2152-7806.103015.
[22]
Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism[J]. Nat Rev Endocrinol, 2012, 8(12): 743-754. DOI: 10.1038/nrendo.2012.189.
[23]
Hein E, Nowak M, Kiess O, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study[J]. J Neural Transm (Vienna), 2013, 120(5): 821-827. DOI: 10.1007/s00702-012-0908-6.
[24]
Rong P, Liu J, Wang L, et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study[J]. J Affect Disord, 2016, 195: 172-179. DOI: 10.1016/j.jad.2016.02.031.
[25]
Liu J, Fang J, Wang Z, et al. Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression[J]. J Affect Disord, 2016, 205: 319-326. DOI: 10.1016/j.jad.2016.08.003.
[26]
Fang J, Egorova N, Rong P, et al. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression[J]. Neuroimage Clin, 2016, 14: 105-111. DOI: 10.1016/j.nicl.2016.12.016.
[27]
Lv H, Zhao YH, Chen JG, et al. Vagus nerve stimulation for depression: a systematic review[J]. Front Psychol, 2019, 10: 64. DOI: 10.3389/fpsyg.2019.00064.
[28]
Woelfer M, Kasties V, Kahlfuss S, et al. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder[J]. Neuroscience, 2019, 403: 93-110. DOI: 10.1016/j.neuroscience.2018.03.034.
[29]
Ma L, Demin KA, Kolesnikova TO, et al. Animal inflammation-based models of depression and their application to drug discovery[J]. Expert Opin Drug Discov, 2017, 12(10): 995-1009. DOI: 10.1080/17460441.2017.1362385.
[30]
Liu CH, Zhang GZ, Li B, et al. Role of inflammation in depression relapse[J]. J Neuroinflammation, 2019, 16(1): 90. DOI: 10.1186/s12974-019-1475-7.
[31]
Evrensel A, Ünsalver , Ceylan ME. Neuroinflammation, gut-brain axis and depression[J]. Psychiatry Investig, 2020, 17(1): 2-8. DOI: 10.30773/pi.2019.08.09.
[32]
Marshall R, Taylor I, Lahr C, et al. Bioelectrical stimulation for the reduction of inflammation in inflammatory bowel disease[J]. Clin Med Insights Gastroenterol, 2015, 8: 55-59. DOI: 10.4137/CGast.S31779.
[33]
Mebius RE, Kraal G. Structure and function of the spleen[J]. Nat Rev Immunol, 2005, 5(8): 606-616. DOI: 10.1038/nri1669.
[34]
Merrill CA, Jonsson MA, Minthon L, et al. Vagus nerve stimulation in patients with Alzheimer's disease: additional follow-up results of a pilot study through 1 year[J]. J Clin Psychiatry, 2006, 67(8): 1171-1178. DOI: 10.4088/jcp.v67n0801.
[35]
Liu AF, Zhao FB, Wang J, et al. Effects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion[J]. J Transl Med, 2016, 14: 101. DOI: 10.1186/s12967-016-0858-0.
[36]
Clark KB, Naritoku DK, Smith DC, et al. Enhanced recognition memory following vagus nerve stimulation in human subjects[J]. Nat Neurosci, 1999, 2(1): 94-98. DOI: 10.1038/4600.
[37]
Sun L, Peräkylä J, Holm K, et al. Vagus nerve stimulation improves working memory performance[J]. J Clin Exp Neuropsychol, 2017, 39(10): 954-964. DOI: 10.1080/13803395.2017.1285869.
[38]
Desbeaumes Jodoin V, Richer F, Miron JP, et al. Long-term sustained cognitive benefits of vagus nerve stimulation in refractory depression[J]. J ECT, 2018, 34(4): 283-290. DOI: 10.1097/YCT.0000000000000502.
[39]
王娟,刘佩蓉,刘春亮,等.经皮耳迷走神经刺激对患者术后早期认知功能的影响[J].上海针灸杂志, 2022, 41(5): 454-459. DOI: 10.13460/j.issn.1005-0957.2022.05.0454.
[40]
祁思忆,范逸辰,唐颖,等.经皮迷走神经电刺激对老年骨科患者术后认知功能的影响[J].上海医学, 2021, 44(11): 827-831. DOI: 10.19842/j.cnki.issn.0253-9934.2021.11.008.
[41]
Huffman WJ, Subramaniyan S, Rodriguiz RM, et al. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice[J]. Brain Stimul, 2019, 12(1): 19-29. DOI: 10.1016/j.brs.2018.10.005.
[42]
Martlé V, Raedt R, Waelbers T, et al. The effect of vagus nerve stimulation on CSF monoamines and the PTZ seizure threshold in dogs[J]. Brain Stimul, 2015, 8(1): 1-6. DOI: 10.1016/j.brs.2014.07.032.
[43]
Raedt R, Clinckers R, Mollet L, et al. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model[J]. J Neurochem, 2011, 117(3): 461-469. DOI: 10.1111/j.1471-4159.2011.07214.x.
[44]
Van Leusden JW, Sellaro R, Colzato LS. Transcutaneous Vagal Nerve Stimulation (tVNS): a new neuromodulation tool in healthy humans?[J]. Front Psychol, 2015, 6: 102. DOI: 10.3389/fpsyg.2015.00102.
[45]
Broncel A, Bocian R, Klos-Wojtczak P, et al. Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders[J]. Brain Res Bull, 2020, 155: 37-47. DOI: 10.1016/j.brainresbull.2019.11.011.
[46]
Gebhardt N, Bär KJ, Boettger MK, et al. Vagus nerve stimulation ameliorated deficits in one-way active avoidance learning and stimulated hippocampal neurogenesis in bulbectomized rats[J]. Brain Stimul, 2013, 6(1): 78-83. DOI: 10.1016/j.brs.2012.01.009.
[47]
刘林,江钟立.迷走神经电刺激在记忆障碍疾病中的研究进展[J].中国康复医学杂志, 2021, 36(11): 1460-1464. DOI: 10.3969/j.issn.1001-1242.2021.11.026.
[48]
Fornai F, Ruffoli R, Giorgi FS, et al. The role of locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation[J]. Eur J Neurosci, 2011, 33(12): 2169-2178. DOI: 10.1111/j.1460-9568.2011.07707.x.
[49]
喻东山.睡眠的神经递质与精神药理[J].中国全科医学, 2010, 13(8): 915-916. DOI: 10.3969/j.issn.1007-9572.2010.08.046.
[50]
Manta S, El Mansari M, Debonnel G, et al. Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems[J]. Int J Neuropsychopharmacol, 2013, 16(2): 459-470. DOI: 10.1017/S1461145712000387.
[51]
Neese SL, Sherill LK, Tan AA, et al. Vagus nerve stimulation may protect GABAergic neurons following traumatic brain injury in rats: an immunocytochemical study[J]. Brain Res, 2007, 1128(1): 157-163. DOI: 10.1016/j.brainres.2006.09.073.
[52]
Shi C, Flanagan SR, Samadani U. Vagus nerve stimulation to augment recovery from severe traumatic brain injury impeding consciousness: a prospective pilot clinical trial[J]. Neurol Res, 2013, 35(3): 263-276. DOI: 10.1179/1743132813Y.0000000167.
[53]
李益欢,钱春生,张斌,等.神经电刺激对脑外伤昏迷大鼠前额叶皮质5-羟色胺2A和γ-氨基丁酸b受体表达的影响[J].中国老年学杂志, 2021, 41(6): 1309-1312. DOI: 10.3969/j.issn.1005-9202.2021.06.051.
[54]
郭佳,关智媛,孙守元,等.迷走神经电刺激对大脑中动脉阻断/再灌注大鼠脑损伤及脑组织中p-CREB表达的影响[J].解放军医学杂志, 2017, 42(8): 702-706. DOI: 10.11855/j.issn.0577-7402.2017.08.08.
[55]
王伟伟,张保安,熊小云,等.迷走神经电刺激对缺血性脑卒中大鼠脑损伤及Toll样受体4信号通路的影响[J].新乡医学院学报, 2020, 37(3): 225-229. DOI: 10.7683/xxyxyxb.2020.03.006.
[1] 广旸, 何文, 吴佳俊, 赵明昌, 张雨康, 万芳. 基于深度学习的甲状腺结节超声图像分割的临床应用[J]. 中华医学超声杂志(电子版), 2022, 19(03): 206-211.
[2] 黄泽, 张梓榆, 杨青宇, 赖声清, 李海燕. 乳腺腔镜手术临床应用现状及训练路径[J]. 中华乳腺病杂志(电子版), 2023, 17(02): 122-125.
[3] 叶啟发. 生物人工肝血液净化材料研究现状[J]. 中华移植杂志(电子版), 2023, 17(02): 0-.
[4] 朱矩琴, 刘媛珍. 牛肺磷脂注射液与猪肺磷脂注射液在新生儿呼吸窘迫综合征中的临床应用[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 258-260.
[5] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[6] 乔梁, 杨向群. 脂肪干细胞在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 230-236.
[7] 陈妙纯, 吴高椿, 刘韬. 人诱导性多能干细胞向红系分化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 115-120.
[8] 毛宁, 朱勇. 胆汁酸性腹泻的发生机制与诊断[J]. 中华结直肠疾病电子杂志, 2022, 11(05): 425-428.
[9] 佘重阳, 卢弘. Janus激酶抑制剂在幼年特发性关节炎相关葡萄膜炎治疗中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 104-108.
[10] 马嘉蹊, 米倩倩, 周义仁, 王丹. 阿达木单抗在眼科临床应用的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 377-381.
[11] 王利, 张磊, 费晓炜, 伊西才, 王彦刚. 迷走神经电刺激术中充分剥离迷走神经鞘膜对术后癫痫发作影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 160-164.
[12] 肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.
[13] 孟智宏. 醒脑开窍针刺法治疗多系统疾病的机制研究现状[J]. 中华针灸电子杂志, 2023, 12(04): 142-145.
[14] 高海杰, 王宝军. TLR4信号通路与神经系统疾病关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 61-65.
[15] 霍俊艳, 傅瑜. 卵圆孔未闭检测方法临床应用研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 310-313.
阅读次数
全文


摘要