切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 241 -245. doi: 10.3877/cma.j.issn.2095-123X.2023.04.008

综述

脑-机接口的技术原理及临床应用
肖庆, 王诚, 周焜, 魏宜功()   
  1. 550004 贵阳,贵州医科大学附属金阳医院(贵阳市第二人民医院)神经外科
  • 收稿日期:2022-07-02 出版日期:2023-08-15
  • 通信作者: 魏宜功

Technical principle and clinical application of brain-computer interface

Qing Xiao, Cheng Wang, Kun Zhou, Yigong Wei()   

  1. Department of Neurosurgery, Affiliated Jinyang Hospital of Guizhou Medical University (Guiyang Second People's Hospital), Guiyang 550004, China
  • Received:2022-07-02 Published:2023-08-15
  • Corresponding author: Yigong Wei
  • Supported by:
    Science and Technology Fund of Guizhou Provincial Health Commission(gzwjkj2020-1-104)
引用本文:

肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.

Qing Xiao, Cheng Wang, Kun Zhou, Yigong Wei. Technical principle and clinical application of brain-computer interface[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(04): 241-245.

一些神经系统疾病会导致大脑与肢体之间的信号"桥梁"被打破,遗留严重的功能障碍,因此如何恢复"桥梁"功能是神经领域的研究热点。脑-机接口(BCI)是将大脑与机器连接实现大脑控制机器的过程,BCI技术已成为神经科学与计算机技术领域的研究热点,在神经系统领域起着重要作用,尤其是在神经科学相关的神经康复、假肢、机器人、疾病诊治等方面。随着信息技术的发展,BCI技术的机遇与挑战共存,现就BCI在神经系统疾病领域的应用作一综述。

Some neurological diseases can cause the signal "bridge" between the brain and limbs to be broken, leaving serious dysfunction. Therefore, how to restore the function of this "bridge" has always been a hot-topic in the field of nervous system. Brain-computer interface (BCI) is based on the process of connecting the brain with machinery to realize the control of machinery by the brain. BCI technology has become a research hotspot in the fields of neuroscience and computer technology, which plays an important role in the field of nervous system, especially in the aspects of neural rehabilitation, prosthetics, robotics, disease diagnosis and treatment related to neuroscience. With the development of information technology, opportunities and challenges coexist in BCI technology. This article reviews the application of BCI in the field of neurological diseases.

图1 脑-机接口模式图实线箭头:第1代BCI;虚线箭头:第2代BCI;BCI:脑-机接口
Fig.1 Model diagram of brain-computer interface
表1 不同脑-机接口监测技术的情况对比
Tab.1 Comparison of different brain-computer interface monitoring techniques
[1]
张亚卓.中国脑计划与神经外科发展[J].中华神经外科杂志, 2017, 33(1): 1-3. DOI: 10.3760/cma.j.issn.1001-2346.2017.01.001.
[2]
Kaongoen N, Choi J, Jo S. Speech-imagery-based brain-computer interface system using ear-EEG[J]. J Neural Eng, 2021, 18(1): 016023. DOI: 10.1088/1741-2552/abd10e.
[3]
Khalil K, Asgher U, Ayaz Y. Novel fnirs study on homogeneous symmetric feature-based transfer learning for brain-computer interface[J]. Sci Rep, 2022, 12(1): 3198. DOI: 10.1038/s41598-022-06805-4.
[4]
Wandelt SK, Kellis S, Bjånes DA, et al. Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human[J]. Neuron, 2022, 110(11): 1777-1787.e3. DOI: 10.1016/j.neuron.2022.03.009.
[5]
Martini ML, Oermann EK, Opie NL, et al. Sensor modalities for brain-computer interface technology: a comprehensive literature review[J]. Neurosurgery, 2020, 86(2): E108-E117. DOI: 10.1093/neuros/nyz286.
[6]
Bowen JI, Liang Z, Yuan X, et al. Recent advances in wireless epicortical and intracortical neuronal recording systems[J]. Science China Information Sciences, 2022, 65(4): 1-18. DOI: 10.1007/s11432-021-3373-1.
[7]
Li Y, Wang Y, Cui H. Posterior parietal cortex predicts upcoming movement in dynamic sensorimotor control[J]. Proc Natl Acad Sci U S A, 2022, 119(13): e2118903119. DOI: 10.1073/pnas.2118903119.
[8]
Lee SH, Thunemann M, Lee K, et al. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brainmachine interfaces[J]. Adv Funct Mater, 2022, 32(25): 2112045. DOI: 10.1002/adfm.202112045.
[9]
Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics[J]. Science, 2022, 375(6587): 1411-1417. DOI: 10.1126/science.abj7564.
[10]
徐如祥.脑芯片-脑机接口治疗技术进展[J].中华脑科疾病与康复杂志(电子版), 2020, 10(6): 383-384. DOI: 10.3877/cma.j.issn.2095-123X.2020.06.016.
[11]
Arts LPA, van den Broek EL. The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time-frequency analysis[J]. Nat Comput Sci, 2022, 2: 47-58. DOI: 10.1038/s43588-021-00183-z.
[12]
Kumar N, Michmizos KP. A neurophysiologically interpretable deep neural network predicts complex movement components from brain activity[J]. Sci Rep, 2022, 12(1): 1101. DOI: 10.1038/s41598-022-05079-0.
[13]
Gong ZQ, Gao P, Jiang C, et al. Dream: a toolbox to decode rhythms of the brain system[J]. Neuroinformatics, 2021, 19(3): 529-545. DOI: 10.1007/s12021-020-09500-9.
[14]
Wang T, Chen Y, Cui H. From parametric representation to dynamical system: Shifting views of the motor cortex in motor control[J]. Neurosci Bull, 2022, 38(7): 796-808. DOI: 10.1007/s12264-022-00832-x.
[15]
Kolkhorst H, Veit J, Burgard W, et al. A robust screen-free brain-computer interface for robotic object selection[J]. Front Robot AI, 2020, 7: 38. DOI: 10.3389/frobt.2020.00038.
[16]
吴毅.脑损伤后精准康复治疗技术的研究进展[J].中华物理医学与康复杂志, 2021, 43(11): 1040-1043. DOI: 10.3760/cma.j.issn.0254-1424.2021.11.020.
[17]
郑淑悦,王培,刘艳,等.脑机接口训练对脑卒中患者肢体功能障碍干预效果的Meta分析[J].中国实用护理杂志, 2021, 37(22): 1747-1753. DOI: 10.3760/cma.j.cn211501-20200526-02482.
[18]
刘霞,张萍,李云杰,等.基于运动想象的脑机接口技术运用于脑卒中瘫痪患者脑功能激活和神经网络重塑的研究进展[J].中华神经科杂志, 2021, 54(10): 1089-1093. DOI: 10.3760/cma.j.cn113694-20210202-00085.
[19]
Tremmel C, Herff C, Sato T, et al. Estimating cognitive workload in an interactive virtual reality environment using EEG[J]. Front Hum Neurosci, 2019, 13: 401. DOI: 10.3389/fnhum.2019.00401.
[20]
马珂,徐会友,江继鹏,等.脑机接口技术在创伤性脑损伤神经功能修复中的应用研究进展[J].中华创伤杂志, 2018, 34(8): 754-758. DOI: 10.3760/cma.j.issn.1001-8050.2018.08.015.
[21]
Heelan C, Lee J, O'Shea R, et al. Decoding speech from spike-based neural population recordings in secondary auditory cortex of non-human primates[J]. Commun Biol, 2019, 2: 466. DOI: 10.1038/s42003-019-0707-9.
[22]
Deo DR, Willett FR, Avansino DT, et al. Translating deep learning to neuroprosthetic control[J]. bioRxiv, 2023, Preprint. DOI: 10.1101/2023.04.21.537581.
[23]
Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin[J]. Science, 2023, 380(6646): 735-742. DOI: 10.1126/science.ade0086.
[24]
Chaudhary U, Vlachos I, Zimmermann JB, et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback trainin[J]. Nat Commun, 2022, 13(1): 1236. DOI: 10.1038/s41467-022-28859-8.
[25]
Wang X, Sun X, Gan D, et al. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue[J]. Matter, 2022, 5(4): 1204-1223. DOI: 10.1016/j.matt.2022.01.012.
[26]
蒋鸿杰,郑喆,朱君明.闭环式脑深部电刺激术在帕金森病治疗中的研究进展[J].中华神经外科杂志, 2019, 35(7): 743-746. DOI: 10.3760/cma.j.issn.1001-2346.2019.07.024.
[27]
Yang Y, He Q, Dang Y, et al. Long-term functional outcomes improved with deep brain stimulation in patients with disorders of consciousness[J]. Stroke Vasc Neurol, 2023, Online ahead of print. DOI: 10.1136/svn-2022-001998.
[28]
Yang Y, Qiao S, Sani OG, et al. Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation[J]. Nat Biomed Eng, 2021, 5(4): 324-345. DOI: 10.1038/s41551-020-00666-w.
[29]
Tervo AE, Nieminen JO, Lioumis P, et al. Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback[J]. Brain Stimul, 2022, 15(2): 523-531. DOI: 10.1016/j.brs.2022.01.016.
[30]
Zhao S, Yang J, Wang J, et al. A 0.99-to-4.38 uJ/class event-driven hybrid neural network processor for full-spectrum neural signal analyses[J]. IEEE Trans Biomed Circuits Syst, 2023, 17(3): 598-609. DOI: 10.1109/TBCAS.2023.3268502.
[31]
Putkinen V, Nazari-Farsani S, Seppälä K, et al. Decoding music-evoked emotions in the auditory and motor cortex[J]. Cereb Cortex, 2021, 31(5): 2549-2560. DOI: 10.1093/cercor/bhaa373.
[32]
Somers B, Long CJ, Francart T. EEG-based diagnostics of the auditory system using cochlear implant electrodes as sensors[J]. Sci Rep, 2021, 11(1): 5383. DOI: 10.1038/s41598-021-84829-y.
[33]
Anbarasan R, Gomez Carmona D, Mahendran R. Human taste-perception: brain computer interface (BCI) and its application as an engineering tool for taste-driven sensory studies[J]. Food Engineering Reviews, 2022, 14(3): 408-434. DOI: 10.1007/s12393-022-09308-0.
[34]
Yanagisawa T, Fukuma R, Seymour B, et al. BCI training to move a virtual hand reduces phantom limb pain: a randomized crossover trial[J]. Neurology, 2020, 95(4): e417-e426. DOI: 10.1212/WNL.0000000000009858.
[35]
Cheng G, Ehrlich SK, Lebedev M, et al. Neuroengineering challenges of fusing robotics and neuroscience[J]. Sci Robot, 2020, 5(49): eabd1911. DOI: 10.1126/scirobotics.abd1911.
[36]
Botvinik-Nezer R, Holzmeister F, Camerer CF, et al. Variability in the analysis of a single neuroimaging dataset by many teams[J]. Nature, 2020, 582(7810): 84-88. DOI: 10.1038/s41586-020-2314-9.
[37]
Xing XX, Xu T, Jiang C, et al. Connectome computation system: 2015-2021 updates[J]. Sci Bull (Beijing), 2022, 67(5): 448-451. DOI: 10.1016/j.scib.2021.11.021.
[38]
Kang YN, Chou N, Jang JW, et al. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery[J]. Microsyst Nanoeng, 2021, 7: 66. DOI: 10.1038/s41378-021-00295-6.
[1] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[2] 庞兴华, 苑著. 针吸细胞块技术在术前乳腺癌分子分型中的应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 276-279.
[3] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[4] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[5] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[6] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[7] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[8] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[9] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[10] 杨新宇, 彭建文, 李辉萍, 陶希, 方翠霓, 宋涛. 脑电非线性分析在卒中后意识障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 185-190.
[11] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[12] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[13] 孟智宏. 醒脑开窍针刺法治疗多系统疾病的机制研究现状[J]. 中华针灸电子杂志, 2023, 12(04): 142-145.
[14] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
[15] 王金丹, 谢叙一, 张雷磊, 李佳慧, 朱心洁, 何超翔. 程序性死亡受体1分子抗体制备及应用的虚拟仿真实验建设思路与应用[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 181-185,191.
阅读次数
全文


摘要