切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 241 -245. doi: 10.3877/cma.j.issn.2095-123X.2023.04.008

综述

脑-机接口的技术原理及临床应用
肖庆, 王诚, 周焜, 魏宜功()   
  1. 550004 贵阳,贵州医科大学附属金阳医院(贵阳市第二人民医院)神经外科
  • 收稿日期:2022-07-02 出版日期:2023-08-15
  • 通信作者: 魏宜功

Technical principle and clinical application of brain-computer interface

Qing Xiao, Cheng Wang, Kun Zhou, Yigong Wei()   

  1. Department of Neurosurgery, Affiliated Jinyang Hospital of Guizhou Medical University (Guiyang Second People's Hospital), Guiyang 550004, China
  • Received:2022-07-02 Published:2023-08-15
  • Corresponding author: Yigong Wei
  • Supported by:
    Science and Technology Fund of Guizhou Provincial Health Commission(gzwjkj2020-1-104)
引用本文:

肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.

Qing Xiao, Cheng Wang, Kun Zhou, Yigong Wei. Technical principle and clinical application of brain-computer interface[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(04): 241-245.

一些神经系统疾病会导致大脑与肢体之间的信号"桥梁"被打破,遗留严重的功能障碍,因此如何恢复"桥梁"功能是神经领域的研究热点。脑-机接口(BCI)是将大脑与机器连接实现大脑控制机器的过程,BCI技术已成为神经科学与计算机技术领域的研究热点,在神经系统领域起着重要作用,尤其是在神经科学相关的神经康复、假肢、机器人、疾病诊治等方面。随着信息技术的发展,BCI技术的机遇与挑战共存,现就BCI在神经系统疾病领域的应用作一综述。

Some neurological diseases can cause the signal "bridge" between the brain and limbs to be broken, leaving serious dysfunction. Therefore, how to restore the function of this "bridge" has always been a hot-topic in the field of nervous system. Brain-computer interface (BCI) is based on the process of connecting the brain with machinery to realize the control of machinery by the brain. BCI technology has become a research hotspot in the fields of neuroscience and computer technology, which plays an important role in the field of nervous system, especially in the aspects of neural rehabilitation, prosthetics, robotics, disease diagnosis and treatment related to neuroscience. With the development of information technology, opportunities and challenges coexist in BCI technology. This article reviews the application of BCI in the field of neurological diseases.

图1 脑-机接口模式图实线箭头:第1代BCI;虚线箭头:第2代BCI;BCI:脑-机接口
Fig.1 Model diagram of brain-computer interface
表1 不同脑-机接口监测技术的情况对比
Tab.1 Comparison of different brain-computer interface monitoring techniques
[1]
张亚卓.中国脑计划与神经外科发展[J].中华神经外科杂志, 2017, 33(1): 1-3. DOI: 10.3760/cma.j.issn.1001-2346.2017.01.001.
[2]
Kaongoen N, Choi J, Jo S. Speech-imagery-based brain-computer interface system using ear-EEG[J]. J Neural Eng, 2021, 18(1): 016023. DOI: 10.1088/1741-2552/abd10e.
[3]
Khalil K, Asgher U, Ayaz Y. Novel fnirs study on homogeneous symmetric feature-based transfer learning for brain-computer interface[J]. Sci Rep, 2022, 12(1): 3198. DOI: 10.1038/s41598-022-06805-4.
[4]
Wandelt SK, Kellis S, Bjånes DA, et al. Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human[J]. Neuron, 2022, 110(11): 1777-1787.e3. DOI: 10.1016/j.neuron.2022.03.009.
[5]
Martini ML, Oermann EK, Opie NL, et al. Sensor modalities for brain-computer interface technology: a comprehensive literature review[J]. Neurosurgery, 2020, 86(2): E108-E117. DOI: 10.1093/neuros/nyz286.
[6]
Bowen JI, Liang Z, Yuan X, et al. Recent advances in wireless epicortical and intracortical neuronal recording systems[J]. Science China Information Sciences, 2022, 65(4): 1-18. DOI: 10.1007/s11432-021-3373-1.
[7]
Li Y, Wang Y, Cui H. Posterior parietal cortex predicts upcoming movement in dynamic sensorimotor control[J]. Proc Natl Acad Sci U S A, 2022, 119(13): e2118903119. DOI: 10.1073/pnas.2118903119.
[8]
Lee SH, Thunemann M, Lee K, et al. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brainmachine interfaces[J]. Adv Funct Mater, 2022, 32(25): 2112045. DOI: 10.1002/adfm.202112045.
[9]
Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics[J]. Science, 2022, 375(6587): 1411-1417. DOI: 10.1126/science.abj7564.
[10]
徐如祥.脑芯片-脑机接口治疗技术进展[J].中华脑科疾病与康复杂志(电子版), 2020, 10(6): 383-384. DOI: 10.3877/cma.j.issn.2095-123X.2020.06.016.
[11]
Arts LPA, van den Broek EL. The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time-frequency analysis[J]. Nat Comput Sci, 2022, 2: 47-58. DOI: 10.1038/s43588-021-00183-z.
[12]
Kumar N, Michmizos KP. A neurophysiologically interpretable deep neural network predicts complex movement components from brain activity[J]. Sci Rep, 2022, 12(1): 1101. DOI: 10.1038/s41598-022-05079-0.
[13]
Gong ZQ, Gao P, Jiang C, et al. Dream: a toolbox to decode rhythms of the brain system[J]. Neuroinformatics, 2021, 19(3): 529-545. DOI: 10.1007/s12021-020-09500-9.
[14]
Wang T, Chen Y, Cui H. From parametric representation to dynamical system: Shifting views of the motor cortex in motor control[J]. Neurosci Bull, 2022, 38(7): 796-808. DOI: 10.1007/s12264-022-00832-x.
[15]
Kolkhorst H, Veit J, Burgard W, et al. A robust screen-free brain-computer interface for robotic object selection[J]. Front Robot AI, 2020, 7: 38. DOI: 10.3389/frobt.2020.00038.
[16]
吴毅.脑损伤后精准康复治疗技术的研究进展[J].中华物理医学与康复杂志, 2021, 43(11): 1040-1043. DOI: 10.3760/cma.j.issn.0254-1424.2021.11.020.
[17]
郑淑悦,王培,刘艳,等.脑机接口训练对脑卒中患者肢体功能障碍干预效果的Meta分析[J].中国实用护理杂志, 2021, 37(22): 1747-1753. DOI: 10.3760/cma.j.cn211501-20200526-02482.
[18]
刘霞,张萍,李云杰,等.基于运动想象的脑机接口技术运用于脑卒中瘫痪患者脑功能激活和神经网络重塑的研究进展[J].中华神经科杂志, 2021, 54(10): 1089-1093. DOI: 10.3760/cma.j.cn113694-20210202-00085.
[19]
Tremmel C, Herff C, Sato T, et al. Estimating cognitive workload in an interactive virtual reality environment using EEG[J]. Front Hum Neurosci, 2019, 13: 401. DOI: 10.3389/fnhum.2019.00401.
[20]
马珂,徐会友,江继鹏,等.脑机接口技术在创伤性脑损伤神经功能修复中的应用研究进展[J].中华创伤杂志, 2018, 34(8): 754-758. DOI: 10.3760/cma.j.issn.1001-8050.2018.08.015.
[21]
Heelan C, Lee J, O'Shea R, et al. Decoding speech from spike-based neural population recordings in secondary auditory cortex of non-human primates[J]. Commun Biol, 2019, 2: 466. DOI: 10.1038/s42003-019-0707-9.
[22]
Deo DR, Willett FR, Avansino DT, et al. Translating deep learning to neuroprosthetic control[J]. bioRxiv, 2023, Preprint. DOI: 10.1101/2023.04.21.537581.
[23]
Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin[J]. Science, 2023, 380(6646): 735-742. DOI: 10.1126/science.ade0086.
[24]
Chaudhary U, Vlachos I, Zimmermann JB, et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback trainin[J]. Nat Commun, 2022, 13(1): 1236. DOI: 10.1038/s41467-022-28859-8.
[25]
Wang X, Sun X, Gan D, et al. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue[J]. Matter, 2022, 5(4): 1204-1223. DOI: 10.1016/j.matt.2022.01.012.
[26]
蒋鸿杰,郑喆,朱君明.闭环式脑深部电刺激术在帕金森病治疗中的研究进展[J].中华神经外科杂志, 2019, 35(7): 743-746. DOI: 10.3760/cma.j.issn.1001-2346.2019.07.024.
[27]
Yang Y, He Q, Dang Y, et al. Long-term functional outcomes improved with deep brain stimulation in patients with disorders of consciousness[J]. Stroke Vasc Neurol, 2023, Online ahead of print. DOI: 10.1136/svn-2022-001998.
[28]
Yang Y, Qiao S, Sani OG, et al. Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation[J]. Nat Biomed Eng, 2021, 5(4): 324-345. DOI: 10.1038/s41551-020-00666-w.
[29]
Tervo AE, Nieminen JO, Lioumis P, et al. Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback[J]. Brain Stimul, 2022, 15(2): 523-531. DOI: 10.1016/j.brs.2022.01.016.
[30]
Zhao S, Yang J, Wang J, et al. A 0.99-to-4.38 uJ/class event-driven hybrid neural network processor for full-spectrum neural signal analyses[J]. IEEE Trans Biomed Circuits Syst, 2023, 17(3): 598-609. DOI: 10.1109/TBCAS.2023.3268502.
[31]
Putkinen V, Nazari-Farsani S, Seppälä K, et al. Decoding music-evoked emotions in the auditory and motor cortex[J]. Cereb Cortex, 2021, 31(5): 2549-2560. DOI: 10.1093/cercor/bhaa373.
[32]
Somers B, Long CJ, Francart T. EEG-based diagnostics of the auditory system using cochlear implant electrodes as sensors[J]. Sci Rep, 2021, 11(1): 5383. DOI: 10.1038/s41598-021-84829-y.
[33]
Anbarasan R, Gomez Carmona D, Mahendran R. Human taste-perception: brain computer interface (BCI) and its application as an engineering tool for taste-driven sensory studies[J]. Food Engineering Reviews, 2022, 14(3): 408-434. DOI: 10.1007/s12393-022-09308-0.
[34]
Yanagisawa T, Fukuma R, Seymour B, et al. BCI training to move a virtual hand reduces phantom limb pain: a randomized crossover trial[J]. Neurology, 2020, 95(4): e417-e426. DOI: 10.1212/WNL.0000000000009858.
[35]
Cheng G, Ehrlich SK, Lebedev M, et al. Neuroengineering challenges of fusing robotics and neuroscience[J]. Sci Robot, 2020, 5(49): eabd1911. DOI: 10.1126/scirobotics.abd1911.
[36]
Botvinik-Nezer R, Holzmeister F, Camerer CF, et al. Variability in the analysis of a single neuroimaging dataset by many teams[J]. Nature, 2020, 582(7810): 84-88. DOI: 10.1038/s41586-020-2314-9.
[37]
Xing XX, Xu T, Jiang C, et al. Connectome computation system: 2015-2021 updates[J]. Sci Bull (Beijing), 2022, 67(5): 448-451. DOI: 10.1016/j.scib.2021.11.021.
[38]
Kang YN, Chou N, Jang JW, et al. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery[J]. Microsyst Nanoeng, 2021, 7: 66. DOI: 10.1038/s41378-021-00295-6.
[1] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[2] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[3] 娜菲沙·沙木西丁, 艾科热木·开赛尔江, 王雅琦, 李万富. 先天性腹壁缺损患儿的发病机制及创新治疗[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 468-475.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 周清洁, 蒋萍萍, 梁云, 李琰. 脂质水胶体技术在创面愈合中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 360-363.
[6] 罗王宇, 赵乐, 杨柳, 张晓磊. 信号转导和转录激活因子3在牙发育中的机制研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 357-361.
[7] 王淑君, 张楚晗, 唐一阳, 赵雨桐, 李佳伦, 付佳乐. 自粘接树脂水门汀的临床应用及展望[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 276-286.
[8] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[9] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[10] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[11] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[12] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[13] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[14] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[15] 张丽嬴, 陈诗婷, 梁舒华, 柯宏霞, 宋文俊. H2N2 病毒插入新冠刺突蛋白基因探究PA 基因的包装信号边界[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 204-211,228.
阅读次数
全文


摘要