[1] |
|
[2] |
Kaongoen N, Choi J, Jo S. Speech-imagery-based brain-computer interface system using ear-EEG[J]. J Neural Eng, 2021, 18(1): 016023. DOI: 10.1088/1741-2552/abd10e.
|
[3] |
Khalil K, Asgher U, Ayaz Y. Novel fnirs study on homogeneous symmetric feature-based transfer learning for brain-computer interface[J]. Sci Rep, 2022, 12(1): 3198. DOI: 10.1038/s41598-022-06805-4.
|
[4] |
Wandelt SK, Kellis S, Bjånes DA, et al. Decoding grasp and speech signals from the cortical grasp circuit in a tetraplegic human[J]. Neuron, 2022, 110(11): 1777-1787.e3. DOI: 10.1016/j.neuron.2022.03.009.
|
[5] |
Martini ML, Oermann EK, Opie NL, et al. Sensor modalities for brain-computer interface technology: a comprehensive literature review[J]. Neurosurgery, 2020, 86(2): E108-E117. DOI: 10.1093/neuros/nyz286.
|
[6] |
Bowen JI, Liang Z, Yuan X, et al. Recent advances in wireless epicortical and intracortical neuronal recording systems[J]. Science China Information Sciences, 2022, 65(4): 1-18. DOI: 10.1007/s11432-021-3373-1.
|
[7] |
Li Y, Wang Y, Cui H. Posterior parietal cortex predicts upcoming movement in dynamic sensorimotor control[J]. Proc Natl Acad Sci U S A, 2022, 119(13): e2118903119. DOI: 10.1073/pnas.2118903119.
|
[8] |
Lee SH, Thunemann M, Lee K, et al. Scalable thousand channel penetrating microneedle arrays on flex for multimodal and large area coverage brainmachine interfaces[J]. Adv Funct Mater, 2022, 32(25): 2112045. DOI: 10.1002/adfm.202112045.
|
[9] |
Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics[J]. Science, 2022, 375(6587): 1411-1417. DOI: 10.1126/science.abj7564.
|
[10] |
|
[11] |
Arts LPA, van den Broek EL. The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time-frequency analysis[J]. Nat Comput Sci, 2022, 2: 47-58. DOI: 10.1038/s43588-021-00183-z.
|
[12] |
Kumar N, Michmizos KP. A neurophysiologically interpretable deep neural network predicts complex movement components from brain activity[J]. Sci Rep, 2022, 12(1): 1101. DOI: 10.1038/s41598-022-05079-0.
|
[13] |
Gong ZQ, Gao P, Jiang C, et al. Dream: a toolbox to decode rhythms of the brain system[J]. Neuroinformatics, 2021, 19(3): 529-545. DOI: 10.1007/s12021-020-09500-9.
|
[14] |
Wang T, Chen Y, Cui H. From parametric representation to dynamical system: Shifting views of the motor cortex in motor control[J]. Neurosci Bull, 2022, 38(7): 796-808. DOI: 10.1007/s12264-022-00832-x.
|
[15] |
Kolkhorst H, Veit J, Burgard W, et al. A robust screen-free brain-computer interface for robotic object selection[J]. Front Robot AI, 2020, 7: 38. DOI: 10.3389/frobt.2020.00038.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
Tremmel C, Herff C, Sato T, et al. Estimating cognitive workload in an interactive virtual reality environment using EEG[J]. Front Hum Neurosci, 2019, 13: 401. DOI: 10.3389/fnhum.2019.00401.
|
[20] |
|
[21] |
Heelan C, Lee J, O'Shea R, et al. Decoding speech from spike-based neural population recordings in secondary auditory cortex of non-human primates[J]. Commun Biol, 2019, 2: 466. DOI: 10.1038/s42003-019-0707-9.
|
[22] |
Deo DR, Willett FR, Avansino DT, et al. Translating deep learning to neuroprosthetic control[J]. bioRxiv, 2023, Preprint. DOI: 10.1101/2023.04.21.537581.
|
[23] |
Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin[J]. Science, 2023, 380(6646): 735-742. DOI: 10.1126/science.ade0086.
|
[24] |
Chaudhary U, Vlachos I, Zimmermann JB, et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback trainin[J]. Nat Commun, 2022, 13(1): 1236. DOI: 10.1038/s41467-022-28859-8.
|
[25] |
Wang X, Sun X, Gan D, et al. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue[J]. Matter, 2022, 5(4): 1204-1223. DOI: 10.1016/j.matt.2022.01.012.
|
[26] |
|
[27] |
Yang Y, He Q, Dang Y, et al. Long-term functional outcomes improved with deep brain stimulation in patients with disorders of consciousness[J]. Stroke Vasc Neurol, 2023, Online ahead of print. DOI: 10.1136/svn-2022-001998.
|
[28] |
Yang Y, Qiao S, Sani OG, et al. Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation[J]. Nat Biomed Eng, 2021, 5(4): 324-345. DOI: 10.1038/s41551-020-00666-w.
|
[29] |
Tervo AE, Nieminen JO, Lioumis P, et al. Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback[J]. Brain Stimul, 2022, 15(2): 523-531. DOI: 10.1016/j.brs.2022.01.016.
|
[30] |
Zhao S, Yang J, Wang J, et al. A 0.99-to-4.38 uJ/class event-driven hybrid neural network processor for full-spectrum neural signal analyses[J]. IEEE Trans Biomed Circuits Syst, 2023, 17(3): 598-609. DOI: 10.1109/TBCAS.2023.3268502.
|
[31] |
Putkinen V, Nazari-Farsani S, Seppälä K, et al. Decoding music-evoked emotions in the auditory and motor cortex[J]. Cereb Cortex, 2021, 31(5): 2549-2560. DOI: 10.1093/cercor/bhaa373.
|
[32] |
Somers B, Long CJ, Francart T. EEG-based diagnostics of the auditory system using cochlear implant electrodes as sensors[J]. Sci Rep, 2021, 11(1): 5383. DOI: 10.1038/s41598-021-84829-y.
|
[33] |
Anbarasan R, Gomez Carmona D, Mahendran R. Human taste-perception: brain computer interface (BCI) and its application as an engineering tool for taste-driven sensory studies[J]. Food Engineering Reviews, 2022, 14(3): 408-434. DOI: 10.1007/s12393-022-09308-0.
|
[34] |
Yanagisawa T, Fukuma R, Seymour B, et al. BCI training to move a virtual hand reduces phantom limb pain: a randomized crossover trial[J]. Neurology, 2020, 95(4): e417-e426. DOI: 10.1212/WNL.0000000000009858.
|
[35] |
Cheng G, Ehrlich SK, Lebedev M, et al. Neuroengineering challenges of fusing robotics and neuroscience[J]. Sci Robot, 2020, 5(49): eabd1911. DOI: 10.1126/scirobotics.abd1911.
|
[36] |
Botvinik-Nezer R, Holzmeister F, Camerer CF, et al. Variability in the analysis of a single neuroimaging dataset by many teams[J]. Nature, 2020, 582(7810): 84-88. DOI: 10.1038/s41586-020-2314-9.
|
[37] |
Xing XX, Xu T, Jiang C, et al. Connectome computation system: 2015-2021 updates[J]. Sci Bull (Beijing), 2022, 67(5): 448-451. DOI: 10.1016/j.scib.2021.11.021.
|
[38] |
Kang YN, Chou N, Jang JW, et al. A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery[J]. Microsyst Nanoeng, 2021, 7: 66. DOI: 10.1038/s41378-021-00295-6.
|