切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 246 -250. doi: 10.3877/cma.j.issn.2095-123X.2023.04.009

综述

局部振动疗法治疗脑卒中后运动障碍的研究进展
侯牧韶, 刘子渤, 李红玲()   
  1. 050000 石家庄,河北医科大学第二医院康复医学二科
  • 收稿日期:2022-07-04 出版日期:2023-08-15
  • 通信作者: 李红玲

Advances in focal muscle vibration therapy for the treatment of post-stroke dyskinesia

Mushao Hou, Zibo Liu, Hongling Li()   

  1. Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
  • Received:2022-07-04 Published:2023-08-15
  • Corresponding author: Hongling Li
引用本文:

侯牧韶, 刘子渤, 李红玲. 局部振动疗法治疗脑卒中后运动障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 246-250.

Mushao Hou, Zibo Liu, Hongling Li. Advances in focal muscle vibration therapy for the treatment of post-stroke dyskinesia[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(04): 246-250.

卒中后运动障碍是脑卒中常见的并发症,主要表现为痉挛、肌肉萎缩、肌力下降、平衡及步态异常等。局部振动疗法(FMV)广泛应用于脑卒中、帕金森病等神经系统疾病运动功能受损的恢复,不仅可以改善痉挛状态、减缓肌肉萎缩、提高肌肉力量,还可提高平衡能力、改善步态异常。本文围绕FMV的定义、改善脑卒中后运动功能的作用机制、临床应用及不良反应等进行综述,以期为临床选择治疗方法提供依据,为科研提供新的思路。

Post-stroke dyskinesia is a common complication of stroke, characterized by spasticity, muscle atrophy, decreased muscle strength, and balance and gait abnormalities. In recent years, it has been found that focal muscle vibration (FMV) is widely used for the recovery of impaired motor function in neurological disorders such as stroke and Parkinson's disease. It not only improves spasticity, slows down muscle atrophy and improves muscle strength, but also improves balance and improves gait abnormalities. This article reviews the definition of FMV, the mechanism of action to improve motor function after stroke, clinical application and adverse effects, with a view to providing a more effective treatment for the clinic and new ideas for scientific research.

[1]
王巍巍.研究早期康复护理干预脑卒中患者肢体功能恢复的效果[J].世界最新医学信息文摘(连续型电子期刊), 2019, 19(86): 136-147; 136, 147. DOI: 10.19613/j.cnki.1671-3141.2019.86.070.
[2]
Hankey GJ. Stroke[J]. Lancet, 2017, 389(10069): 641-654. DOI: 10.1016/S0140-6736(16)30962-X.
[3]
Ward NS. Restoring brain function after stroke - bridging the gap between animals and humans[J]. Nat Rev Neurol, 2017, 13(4): 244-255. DOI: 10.1038/nrneurol.2017.34.
[4]
Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke[J]. Cochrane Database Syst Rev, 2014, 2014(11): Cd010820. DOI: 10.1002/14651858.CD010820.pub2.
[5]
Eklund G, Hagbarth KE. Normal variability of tonic vibration reflexes in man[J]. Exp Neurol, 1966, 16(1): 80-92. DOI: 10.1016/0014-4886(66)90088-4.
[6]
Murillo N, Valls-Sole J, Vidal J, et al. Focal vibration in neurorehabilitation[J]. Eur J Phys Rehabil Med, 2014, 50(2): 231-242.
[7]
袁小敏,琚红艳.重复局部肌肉振动疗法对脑卒中偏瘫早期患者上肢功能恢复的效果[J].中国康复理论与实践, 2018, 24(8): 938-941. DOI: 10.3969/j.issn.1006-9771.2018.08.013.
[8]
周人龙,张洪蕊,刘陵鑫,等.局部振动治疗对急性期脑卒中患者下肢本体感觉及运动功能的疗效观察[J].中国康复, 2022, 37(2): 109-112. DOI: 10.3870/zgkf.2022.02.009.
[9]
Calabrò RS, Naro A, Russo M, et al. Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: a pilot randomized controlled trial[J]. PloS One, 2017, 12(10): e0185936. DOI: 10.1371/journal.pone.0185936.
[10]
Sales RM, Cerqueira MS, Bezerra de Morais AT, et al. Acute effects of whole-body vibration on spinal excitability level and ankle plantar flexion spasticity in post-stroke individuals: a randomized controlled trial[J]. J Bodyw Mov Ther, 2020, 24(2): 37-42. DOI: 10.1016/j.jbmt.2019.05.018.
[11]
Celletti C, Suppa A, Bianchini E, et al. Promoting post-stroke recovery through focal or whole body vibration: criticisms and prospects from a narrative review[J]. Neurol Sci, 2020, 41(1): 11-24. DOI: 10.1007/s10072-019-04047-3.
[12]
Costantino C, Galuppo L, Romiti D. Short-term effect of local muscle vibration treatment versus sham therapy on upper limb in chronic post-stroke patients: a randomized controlled trial[J]. Eur J Phys Rehabil Med, 2017, 53(1): 32-40. DOI: 10.23736/S1973-9087.16.04211-8.
[13]
陈如洋,杨占宇,马小迪,等.全身振动治疗在康复领域的研究进展[J].中华脑科疾病与康复杂志(电子版), 2020, 10(6): 374-377. DOI: 10.3877/cma.j.issn.2095-123X.2020.06.013.
[14]
Alashram AR, Padua E, Romagnoli C, et al. Effectiveness of focal muscle vibration on hemiplegic upper extremity spasticity in individuals with stroke: a systematic review[J]. NeuroRehabilitation, 2019, 45(4): 471-481. DOI: 10.3233/NRE-192863.
[15]
Ribot-Ciscar E, Butler JE, Thomas CK. Facilitation of triceps brachii muscle contraction by tendon vibration after chronic cervical spinal cord injury[J]. J Appl Physiol (1985), 2003, 94(6): 2358-2367. DOI: 10.1152/japplphysiol.00894.2002.
[16]
Cotey D, Hornby TG, Gordon KE, et al. Increases in muscle activity produced by vibration of the thigh muscles during locomotion in chronic human spinal cord injury[J]. Exp Brain Res, 2009, 196(3): 361-374. DOI: 10.1007/s00221-009-1855-9.
[17]
Paoloni M, Mangone M, Scettri P, et al. Segmental muscle vibration improves walking in chronic stroke patients with foot drop: a randomized controlled trial[J]. Neurorehabil Neural Repair, 2010, 24(3): 254-262. DOI: 10.1177/1545968309349940.
[18]
Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches[J]. Brain, 2011, 134(5): 1264-1276. DOI: 10.1093/brain/awr033.
[19]
Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation[J]. Clin Neurophysiol, 2006, 117(8): 1641-1659. DOI: 10.1016/j.clinph.2006.01.016.
[20]
Marconi B, Filippi GM, Koch G, et al. Long-term effects on cortical excitability and motor recovery induced by repeated muscle vibration in chronic stroke patients[J]. Neurorehabil Neural Repair, 2011, 25(1): 48-60. DOI: 10.1177/1545968310376757.
[21]
Li W, Li C, Xiang Y, et al. Study of the activation in sensorimotor cortex and topological properties of functional brain network following focal vibration on healthy subjects and subacute stroke patients: an EEG study[J]. Brain Res, 2019, 1722: 146338. DOI: 10.1016/j.brainres.2019.146338.
[22]
Li W, Li C, Xu Q, et al. Effects of focal vibration over upper limb muscles on the activation of sensorimotor cortex network: an EEG study[J]. J Healthc Eng, 2019, 2019: 9167028. DOI: 10.1155/2019/9167028.
[23]
Li Hegner Y, Saur R, Veit R, et al. BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination[J]. J Neurophysiol, 2007, 97(1): 264-271. DOI: 10.1152/jn.00617.2006.
[24]
Lopez S, Bini F, Del Percio C, et al. Electroencephalographic sensorimotor rhythms are modulated in the acute phase following focal vibration in healthy subjects[J]. Neuroscience, 2017, 352: 236-248. DOI: 10.1016/j.neuroscience.2017.03.015.
[25]
Sankarasubramanian V, Machado AG, Conforto AB, et al. Inhibition versus facilitation of contralesional motor cortices in stroke: deriving a model to tailor brain stimulation[J]. Clin Neurophysiol, 2017, 128(6): 892-902. DOI: 10.1016/j.clinph.2017.03.030.
[26]
Song J, Young BM, Nigogosyan Z, et al. Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology[J]. Front Neuroeng, 2014, 7: 31. DOI: 10.3389/fneng.2014.00031.
[27]
Dodd KC, Nair VA, Prabhakaran V. Role of the contralesional vs. ipsilesional hemisphere in stroke recovery[J]. Front Hum Neurosci, 2017, 11: 469. DOI: 10.3389/fnhum.2017.00469.
[28]
Fridman EA, Hanakawa T, Chung M, et al. Reorganization of the human ipsilesional premotor cortex after stroke[J]. Brain, 2004, 127(Pt4): 747-758. DOI: 10.1093/brain/awh082.
[29]
Marconi B, Filippi GM, Koch G, et al. Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects[J]. J Neurol Sci, 2008, 275(1-2): 51-59. DOI: 10.1016/j.jns.2008.07.025.
[30]
Toscano M, Celletti C, Viganò A, et al. Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study[J]. Front Neurol, 2019, 10: 115. DOI: 10.3389/fneur.2019.00115.
[31]
Hagbarth KE, Eklund G. Tonic vibration reflexes (TVR) in spasticity[J]. Brain Res, 1966, 2(2): 201-203. DOI: 10.1016/0006-8993(66)90029-1.
[32]
Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs[J]. Muscle Nerve, 2007, 36(1): 21-29. DOI: 10.1002/mus.20796.
[33]
Lee G, Cho Y, Beom J, et al. Evaluating the differential electrophysiological effects of the focal vibrator on the tendon and muscle belly in healthy people[J]. Ann Rehabil Med, 2014, 38(4): 494-505. DOI: 10.5535/arm.2014.38.4.494.
[34]
Mileva KN, Bowtell JL, Kossev AR. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men[J]. Exp Physiol, 2009, 94(1): 103-116. DOI: 10.1113/expphysiol.2008.042689.
[35]
Caliandro P, Celletti C, Padua L, et al. Focal muscle vibration in the treatment of upper limb spasticity: a pilot randomized controlled trial in patients with chronic stroke[J]. Arch Phys Med Rehabil, 2012, 93(9): 1656-1661. DOI: 10.1016/j.apmr.2012.04.002.
[36]
Paoloni M, Tavernese E, Fini M, et al. Segmental muscle vibration modifies muscle activation during reaching in chronic stroke: a pilot study[J]. NeuroRehabilitation, 2014, 35(3): 405-414. DOI: 10.3233/NRE-141131.
[37]
Cordo P, Lutsep H, Cordo L, et al. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients[J]. Neurorehabil Neural Repair, 2009, 23(1): 67-77. DOI: 10.1177/1545968308317437.
[38]
Annino G, Alashram AR, Alghwiri AA, et al. Effect of segmental muscle vibration on upper extremity functional ability poststroke: a randomized controlled trial[J]. Medicine (Baltimore), 2019, 98(7): e14444. DOI: 10.1097/MD.0000000000014444.
[39]
O'Dell MW, Lin CC, Harrison V. Stroke rehabilitation: strategies to enhance motor recovery[J]. Annu Rev Med, 2009, 60(1): 55-68. DOI: 10.1146/annurev.med.60.042707.104248.
[40]
Lapole T, Temesi J, Arnal PJ, et al. Modulation of soleus corticospinal excitability during achilles tendon vibration[J]. Exp Brain Res, 2015, 233(9): 2655-2662. DOI: 10.1007/s00221-015-4336-3.
[41]
Conrad MO, Scheidt RA, Schmit BD. Effects of wrist tendon vibration on targeted upper-arm movements in poststroke hemiparesis[J]. Neurorehabil Neural Repair, 2011, 25(1): 61-70. DOI: 10.1177/1545968310378507.
[42]
Moggio L, de Sire A, Marotta N, et al. Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews[J]. Disabil Rehabil, 2022, 44(20): 5741-5749. DOI: 10.1080/09638288.2021.1946175.
[43]
Alashram AR, Padua E, Romagnoli C, et al. Effectiveness of focal muscle vibration on hemiplegic upper extremity spasticity in individuals with stroke: a systematic review[J]. NeuroRehabilitation, 2019, 45(4): 471-481. DOI: 10.3233/NRE-192863.
[44]
Li W, Li C, Liu P, et al. Development and preliminary validation of a pneumatic focal vibration system to the mitigation of post-stroke spasticity[J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 380-388. DOI: 10.1109/TNSRE.2021.3052187.
[45]
付娟娟,王红星,王培,等.胫神经局部振动对脑卒中患者小腿三头肌痉挛的影响及神经生理机制研究[J].中华物理医学与康复杂志, 2021, 43(5): 391-395. DOI: 10.3760/cma.j.issn.0254-1424.2021.05.002.
[46]
师昉,李福亮,吕泽平.局部振动治疗仪对偏瘫患者下肢痉挛及三维步态参数的效果研究[J].中国医药导报, 2020, 17(29): 119-122.
[47]
张艳清,孙丽杰,张燕红.局部振动训练对脑卒中合并上肢功能障碍患者上肢功能及疼痛痉挛程度的影响[J].中国疗养医学, 2021, 30(6): 618-620. DOI: 10.13517/j.cnki.ccm.2021.06.018.
[48]
Berger D, Bloechlinger S, von Haehling S, et al. Dysfunction of respiratory muscles in critically ill patients on the intensive care unit[J]. J Cachexia Sarcopenia Muscle, 2016, 7(4): 403-412. DOI: 10.1002/jcsm.12108.
[49]
Smilde HA, Vincent JA, Baan GC, et al. Changes in muscle spindle firing in response to length changes of neighboring muscles[J]. J Neurophysiol, 2016, 115(6): 3146-3155. DOI: 10.1152/jn.00937.2015.
[50]
Guang H, Ji L, Shi Y. Focal vibration stretches muscle fibers by producing muscle waves[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(4): 839-846. DOI: 10.1109/TNSRE.2018.2816953.
[51]
Akazawa N, Harada K, Okawa N, et al. Muscle mass and intramuscular fat of the quadriceps are related to muscle strength in non-ambulatory chronic stroke survivors: a cross-sectional study[J]. PLoS One, 2018, 13(8): e0201789. DOI: 10.1371/journal.pone.0201789.
[52]
吴毅.脑卒中患者的脑功能检测及脑刺激新技术[J].中华物理医学与康复杂志, 2019, 41(2): 81-83. DOI: 10.3760/cma.j.issn.0254-1424.2019.02.001.
[53]
Meyer PF, Oddsson LI, De Luca CJ. The role of plantar cutaneous sensation in unperturbed stance[J]. Exp Brain Res, 2004, 156(4): 505-512. DOI: 10.1007/s00221-003-1804-y.
[54]
席建明,门薇,刘承梅,等.局部肌肉振动疗法对偏瘫患者步行及平衡功能的临床疗效[J].中国康复, 2019, 34(8): 411-413. DOI: 10.3870/zgkf.2019.08.005.
[55]
Lee SW, Cho KH, Lee WH. Effect of a local vibration stimulus training programme on postural sway and gait in chronic stroke patients: a randomized controlled trial[J]. Clin Rehabil, 2013, 27(10): 921-931. DOI: 10.1177/0269215513485100.
[56]
Mikhael M, Orr R, Fiatarone Singh MA. The effect of whole body vibration exposure on muscle or bone morphology and function in older adults: a systematic review of the literature[J]. Maturitas, 2010, 66(2): 150-157. DOI: 10.1016/j.maturitas.2010.01.013.
[57]
Jepsen DB, Thomsen K, Hansen S, et al. Effect of whole-body vibration exercise in preventing falls and fractures: a systematic review and meta-analysis[J]. BMJ Open, 2017, 7(12): e018342. DOI: 10.1136/bmjopen-2017-018342.
[58]
Bovenzi M, Schust M, Mauro M. An overview of low back pain and occupational exposures to whole-body vibration and mechanical shocks[J]. Med Lav, 2017, 108(6): 419-433. DOI: 10.23749/mdl.v108i6.6639.
[59]
沈显山,吴建贤,洪永锋,等.局部振动在脑卒中康复的应用进展[J].中国康复医学杂志, 2018, 33(11): 1370-1373. DOI: 10.3969/j.issn.1001-1242.2018.11.026.
[1] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[2] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[3] 廖家权, 吴波, 唐昌敏. 体外冲击波联合肌电生物反馈对脑卒中后足下垂的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 286-292.
[4] 许方军, 曹晓光, 王修敏, 董学超, 刘云卫, 彭云飞, 周康. 虚拟情景互动技术联合肩胛骨运动控制强化训练对偏瘫患者上肢功能及日常生活活动能力的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 222-228.
[5] 陈蝶, 关莹, 韩笑, 冼少荣. 颈动脉彩色多普勒联合经颅彩色多普勒评估缺血性脑卒中疗效的临床价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 297-302.
[6] 孙畅, 赵世刚, 白文婷. 脑卒中后认知障碍与内分泌激素变化的关系[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 471-476.
[7] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
[8] 杨海华, 袁景林, 周晓梅, 牛军伟. RNF213基因突变所致烟雾病一家系病例临床分析并文献复习[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 495-498.
[9] 丁文华, 王育伟, 邱景景, 杨琼, 耿玉荣. 脑小血管病影像学标志物与运动障碍研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 429-434.
[10] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
[11] 邓颖, 黄山, 胡慧秀, 孙超. 老年缺血性脑卒中患者危险因素聚集情况分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 344-349.
[12] 祁研, 张岩, 陈雪, 刘颖, 史楠. 探讨高低频交互rTMS对老年脑卒中偏瘫患者肢体功能、吞咽功能及日常生活活动能力的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 359-363.
[13] 许毛毛, 王宝军, 石雨, 陈超, 庞江霞. 人工寒潮和热浪对易卒中型肾血管性高血压大鼠脑卒中的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 237-243.
[14] 韩佳熙, 范向民, 苏宁. 数字技术评估方法在神经系统运动障碍诊疗中应用的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 275-279.
[15] 鄢嫣, 胡娴静, 张鹤立, 李葆华. 脑卒中共病患者的共病现况及健康管理的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 285-289.
阅读次数
全文


摘要