切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 321 -326. doi: 10.3877/cma.j.issn.2095-123X.2023.06.001

临床研究

开发和验证预测脑肿瘤术后消化道出血的列线图:单中心研究
黄利军, 熊志勇, 李丹凤()   
  1. 430021 武汉,华中科技大学同济医学院附属协和医院神经外科
  • 收稿日期:2022-09-10 出版日期:2023-12-15
  • 通信作者: 李丹凤

Development and validation of a novel nomogram for predicting gastrointestinal bleeding after brain tumor surgery: a single-center study

Lijun Huang, Zhiyong Xiong, Danfeng Li()   

  1. Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2022-09-10 Published:2023-12-15
  • Corresponding author: Danfeng Li
  • Supported by:
    Youth Science Foundation Project of National Natural Science Foundation of China(82103225)
引用本文:

黄利军, 熊志勇, 李丹凤. 开发和验证预测脑肿瘤术后消化道出血的列线图:单中心研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 321-326.

Lijun Huang, Zhiyong Xiong, Danfeng Li. Development and validation of a novel nomogram for predicting gastrointestinal bleeding after brain tumor surgery: a single-center study[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(06): 321-326.

目的

构建脑肿瘤术后消化道出血的列线图用于术前精确预测脑肿瘤患者术后消化道出血的可能性。

方法

选择自2021年1~12月于华中科技大学同济医学院附属协和医院神经外科行颅脑肿瘤切除术的患者为研究对象,按照3∶1分层随机抽样原则将患者分为训练集和测试集。根据训练集患者术后住院期间是否发生消化道出血分为消化道出血组和无消化道出血组,采用差异分析和多因素Logistic回归分析研究脑肿瘤术后继发消化道出血的独立影响因素,基于此构建脑肿瘤术后继发消化道出血的临床预测模型列线图。通过校准曲线、临床有效性以及内部测试集来评估临床模型的性能。

结果

本组共纳入400例脑肿瘤患者,训练集300例,其中脑肿瘤术后出现消化道出血24例(消化道出血组),未出现消化道出血276例(无消化道出血组);测试集100例,其中消化道出血8例,未出现消化道出血92例。2组患者的年龄、肿瘤位置、消化道疾病史、冠心病史、非甾体药物服用史、饮酒史和手术时间比较,差异均有统计学意义(P<0.05)。多因素Logistic回归分析结果显示年龄、非甾体药物服用史、肿瘤位置和手术时间是脑肿瘤患者术后出现消化道出血的独立影响因素,据此构建列线图模型。该模型在训练集中的AUC值为0.817,测试集中的AUC值为0.806,呈现出良好的预测性能和稳定性能。此外校准曲线证实了列线图拟合效果良好。

结论

通过年龄、非甾体药物服用史、肿瘤位置和手术时间等因素构建的列线图,可简单、有效地预测脑肿瘤患者术后出现消化道出血,将为颅脑肿瘤患者积极预防术后消化道出血提供依据。

Objective

To construct a nomogram for accurately predict the possibility of postoperative gastrointestinal bleeding in brain tumor patients.

Methods

Patients who underwent brain tumor resection at the Neurosurgery Department of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology from January to December 2021 were selected as the research subjects. According to the 3∶1 stratified random sampling principle, the patients were divided into a training set and a testing set. The patients of testing set were divided into two groups based on whether they experienced gastrointestinal bleeding during postoperative hospitalization: the gastrointestinal bleeding group and the non-gastrointestinal bleeding group. Differential analysis and multivariate Logistic regression analysis were used to study the independent influencing factors affecting secondary gastrointestinal bleeding after brain tumor surgery. A clinical prediction model for secondary gastrointestinal bleeding after brain tumor surgery was constructed, and the model is presented as a nomogram. The performance of clinical models evaluated through calibration curves, clinical validity, and internal test sets.

Results

A total of 400 patients with brain tumors were included, with 300 in the training set. Among them, 24 patients had gastrointestinal bleeding after brain tumor surgery (gastrointestinal bleeding group), and 276 patients did not have gastrointestinal bleeding (non-gastrointestinal bleeding group); There were 100 cases in the testing set, including 8 cases of gastrointestinal bleeding and 92 cases without gastrointestinal bleeding. The age, tumor location, history of gastrointestinal diseases, history of coronary heart disease, history of non-steroidal drug use, history of alcohol consumption, and surgical time of the two groups of patients were compared, and the differences were statistically significant (P<0.05). The results of multivariate Logistic regression analysis showed that age, history of non-steroidal drug use, tumor location, and operation time were independent influencing factors for postoperative gastrointestinal bleeding in brain tumor patients. Based on this, a nomogram model was constructed. The model showed good prediction and stability performance, with the AUC value of 0.817 in the training set and 0.806 in the testing set, respectively. In addition, the calibration curve confirmed that the nomogram fits very well for the real results.

Conclusion

A nomogram constructed based on factors such as age, history of non-steroidal drug use, tumor location, and surgical time can easily and effectively predict postoperative gastrointestinal bleeding in patients with brain tumors, providing a basis for active prevention of postoperative gastrointestinal bleeding in patients with brain tumors.

表1 训练集中消化道出血组和无消化道出血组患者的临床资料比较
Tab.1 Comparison of clinical data between the gastrointestinal bleeding group and the non-gastrointestinal bleeding group in the training set
项目 消化道出血组(n=24) 无消化道出血组(n=276) t/χ2 P
年龄(岁,Mean±SD) 48.1±12.6 41.3±15.3 2.639 <0.001
性别     1.028 0.396
男性 14 159    
女性 10 117    
肿瘤位置     1.696 <0.001
丘脑及脑干区域 11 56    
其他区域 13 220    
消化道疾病史     1.537 0.016
10 86    
14 190    
冠心病史     2.261 0.008
9 69    
15 207    
非甾体药物服用史     3.649 <0.001
12 90    
12 186    
高血压     1.622 0.079
9 92    
15 184    
饮酒史     2.009 0.032
10 76    
14 200    
吸烟史     1.135 0.319
6 125    
18 151    
手术时间[min,M(P25,P75)] 205.6(156.5,248.6) 178.9(121.2,246.2) 2.164 0.003
实验室指标[M(P25,P75)]        
红细胞计数(×1012/L) 4.45(3.86,4.96) 4.29(3.46,4.88) 1.196 0.826
白细胞计数(×109/L) 7.49(5.16,12.97) 6.59(4.65,9.06) 1.035 0.356
血红蛋白值(g/L) 115(90,131) 125(106,135) 0.569 0.207
血小板计数(×109/L) 209(165,261) 226(178,279) 0.691 0.088
白蛋白值(g/L) 39.5(30.3,41.3) 41.6(35.8,44.1) 0.861 0.126
中性粒细胞计数(%) 5.66(2.66,7.82) 6.51(2.95,10.42) 0.829 0.189
淋巴细胞计数(%) 1.71(1.19,2.32) 1.59(1.06,2.25) 1.536 0.368
单核细胞计数(×109/L) 0.46(0.31,0.62) 0.43(0.29,0.66) 0.889 0.682
纤维蛋白原值(g/L) 3.09(2.71,3.76) 3.15(2.68,3.45) 0.902 0.709
表2 患者脑肿瘤术后消化道出血的多因素Logistic回归分析
Tab.2 Multivariate Logistic analysis of postoperative gastrointestinal bleeding in patients with brain tumors
图1 预测脑肿瘤术后消化道出血的个性化列线图
Fig.1 Personalized nomogram for predicting postoperative gastrointestinal bleeding in brain tumors
图2 训练集和测试集中的ROC曲线
Fig.2 ROC curves in training and testing sets
图3 列线图的校准曲线
Fig.3 Calibration curve of the Nomogram
[1]
Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019[J]. Neuro Oncol, 2022, 24(Suppl 5): v1-v95. DOI: 10.1093/neuonc/noac202.
[2]
Sastry RA, Pertsch NJ, Tang O, et al. Frailty and outcomes after craniotomy for brain tumor[J]. J Clin Neurosci, 2020, 81: 95-100. DOI: 10.1016/j.jocn.2020.09.002.
[3]
成刚,陈旭,岳勇.听神经瘤枕下乙状窦后入路显微切除术后面神经功能损伤的危险因素分析[J].中华脑科疾病与康复杂志(电子版), 2022, 12(3): 137-141. DOI: 10.3877/cma.j.issn.2095-123X.2022.03.003.
[4]
Lu Z, Sun X, Han J, et al. Characteristics of peptic ulcer bleeding in cirrhotic patients with esophageal and gastric varices[J]. Sci Rep, 2020, 10(1): 20068. DOI: 10.1038/s41598-020-76530-3.
[5]
Marques P, de Vries F, Dekkers OM, et al. Pre-operative serum inflammation-based scores in patients with pituitary adenomas[J]. Pituitary, 2021, 24(3): 334-350. DOI: 10.1007/s11102-020-01112-5.
[6]
Chen M, Zheng SH, Yang M, et al. The diagnostic value of preoperative inflammatory markers in craniopharyngioma: a multicenter cohort study[J]. J Neurooncol, 2018, 138(1): 113-122. DOI: 10.1007/s11060-018-2776-x.
[7]
Kramer AA, Zimmerman JE. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited[J]. Crit Care Med, 2007, 35(9): 2052-2056. DOI: 10.1097/01.CCM.0000275267.64078.B0.
[8]
Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018[J]. Neuro Oncol, 2021, 23(12 Suppl 2): iii1-iii105. DOI: 10.1093/neuonc/noab200.
[9]
延鹏翔.脑肿瘤的早期识别和诊治[J].人口与健康, 2020, 28(10): 90-94.
[10]
朱东飞,胡倩,刘泽文.老年口腔颌面部恶性肿瘤患者术后应激性消化道溃疡出血的高危因素分析[J].口腔颌面外科杂志, 2022, 32(2): 106-109. DOI: 10.3969/j.issn.1005-4979.2022.02.006.
[11]
Ogata T, Kamouchi M, Matsuo R, et al. Gastrointestinal bleeding in acute ischemic stroke: recent trends from the fukuoka stroke registry[J]. Cerebrovasc Dis Extra, 2014, 4(2): 156-164. DOI: 10.1159/000365245.
[12]
钟媛.脑卒中患者消化道出血风险评分表的构建及效果评价[D].广州:暨南大学, 2020. DOI: 10.27167/d.cnki.gjinu.2020.001382.
[13]
曹益红.老年人消化性溃疡136例临床分析[J].中国乡村医药, 2020, 27(6): 17. DOI: 10.3969/j.issn.1006-5180.2020.06.009.
[14]
Luo PJ, Lin XH, Lin CC, et al. Risk factors for upper gastrointestinal bleeding among aspirin users: an old issue with new findings from a population-based cohort study[J]. J Formos Med Assoc, 2019, 118(5): 939-944. DOI: 10.1016/j.jfma.2018.10.007.
[15]
陈周利,黄永华.消化性溃疡合并上消化道出血的危险因素分析[J].现代医学与健康研究, 2022, 6(4): 119-122.
[16]
Iwamoto J, Saito Y, Honda A, et al. Clinical features of gastroduodenal injury associated with long-term low-dose aspirin therapy[J]. World J Gastroenterol, 2013, 19(11): 1673-1682. DOI: 10.3748/wjg.v19.i11.1673.
[17]
杜亚军,刘秀红,刘国星,等.冠心病合并上消化道出血临床诊治分析[J].中国继续医学教育, 2019, 11(18): 83-84. DOI: 10.3969/j.issn.1674-9308.2019.18.036.
[18]
Lu M, Sun G, Zhang XL, et al. Risk factors associated with mortality and increased drug costs in nonvariceal upper gastrointestinal Bleeding[J]. Hepatogastroenterology, 2015, 62(140): 907-912.
[19]
薄世宁,聂智品,么改琦,等.机械通气患者并发消化道出血的危险因素分析[J].中国微创外科杂志, 2011, 11(2): 171-174. DOI: 10.3969/j.issn.1009-6604.2011.02.023.
[20]
夏艳丽. 141例急性缺血性脑卒中合并上消化道出血患者临床特征、影响因素分析及救治措施研究[J].临床研究, 2018, 26(7): 18-19.
[21]
陈晴晴,孙金菊,周雪姣.急性脑出血继发院内消化道出血的影响因素分析[J].中国卒中杂志, 2021, 16(10): 1029-1033. DOI: 10.3969/j.issn.1673-5765.2021.10.009.
[22]
Chang H, Wang X, Yang X, et al. Digestive and urologic hemorrhage after intravenous thrombolysis for acute ischemic stroke: data from a Chinese stroke center[J]. J Int Med Res, 2017, 45(1): 352-360. DOI: 10.1177/0300060516686515.
[1] 刘嘉嘉, 王承华, 陈绪娇, 刘瑗玲, 王善钰, 屈海花, 张莉. 经阴道子宫-输卵管实时三维超声造影中患者疼痛发生情况及其影响因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 959-965.
[2] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[3] 杨立胜, 刘梦鸾, 任维聃, 姜国胜, 刘桂伟. 基于血清肿瘤标志物预测结直肠癌肝转移模型价值分析[J]. 中华普通外科学文献(电子版), 2024, 18(01): 39-43.
[4] 王晓梅, 刘冰, 马丽琼, 卢祖静, 苗建军. 基于LASSO-Cox回归分析的非轻症急性胰腺炎死亡风险列线图预测模型的建立和临床应用效果分析[J]. 中华普通外科学文献(电子版), 2024, 18(01): 44-50.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[7] 吴方园, 孙霞, 林昌锋, 张震生. HBV相关肝硬化合并急性上消化道出血的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 45-47.
[8] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[9] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[10] 孙振, 谭天华, 郑洋洋, 李喆, 宋京海. 基于术前纤维蛋白原与白蛋白比值构建肝癌微血管侵犯的预测模型[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 27-32.
[11] 潘晓帆, 徐勤义, 陆瑨, 王丹, 刘路路, 董万利. 颅内动脉瘤破裂介入术后并发脑疝的风险因素分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 37-44.
[12] 薛文欣, 常婉英, 肖瑶, 张盼盼, 党晓智, 宋宏萍. 乳腺恶性非肿块型病变列线图预测模型的构建及外部验证[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1045-1050.
[13] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[14] 杜振双, 胡清福, 林颖艺, 张月霞, 陈美丽, 李祎祺, 王振华. 社区全科医师激励机制的影响因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 876-883.
[15] 王亚丹, 吴静, 黄博洋, 王苗苗, 郭春梅, 宿慧, 王沧海, 王静, 丁鹏鹏, 刘红. 白光内镜下结直肠肿瘤性质预测模型的构建与验证[J]. 中华临床医师杂志(电子版), 2023, 17(06): 655-661.
阅读次数
全文


摘要