切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2024, Vol. 14 ›› Issue (02) : 73 -79. doi: 10.3877/cma.j.issn.2095-123X.2024.02.002

基础研究

PEA3EPHA2在脑胶质母细胞瘤中的表达及在Wnt/β-catenin通路的作用
麦麦提依明·托合提1, 柳叶1, 张诚1, 阿卜杜喀迪尔·牙森1, 高峰1, 王继超1, 吴永刚1,()   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院神经外科
  • 收稿日期:2023-05-20 出版日期:2024-04-15
  • 通信作者: 吴永刚

Expression of PEA3 and EPHA2 in glioblastoma and role in the Wnt/β-catenin pathway

Tuoheti Maimaitiyiming1, Ye Liu1, Cheng Zhang1, Yasen Abudukadier1, Feng Gao1, Jichao Wang1, Yonggang Wu1,()   

  1. 1. Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
  • Received:2023-05-20 Published:2024-04-15
  • Corresponding author: Yonggang Wu
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01C195, 2022D01C625, 2019D01C107)
引用本文:

麦麦提依明·托合提, 柳叶, 张诚, 阿卜杜喀迪尔·牙森, 高峰, 王继超, 吴永刚. PEA3EPHA2在脑胶质母细胞瘤中的表达及在Wnt/β-catenin通路的作用[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 73-79.

Tuoheti Maimaitiyiming, Ye Liu, Cheng Zhang, Yasen Abudukadier, Feng Gao, Jichao Wang, Yonggang Wu. Expression of PEA3 and EPHA2 in glioblastoma and role in the Wnt/β-catenin pathway[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(02): 73-79.

目的

探讨多瘤病毒增强活化子3(PEA3)及红细胞生成素产生肝细胞受体2(EPHA2)在脑胶质母细胞瘤中的表达及在Wnt/β-catenin信号通路的作用。

方法

构建脑胶质瘤U87细胞基因转染模型,将细胞系分为5组:空白组、PEA3干扰组、PEA3干扰空载组、EPHA2干扰组、EPHA2干扰空载组,Western blotting实验检测细胞中EPHA2PEA3的蛋白表达水平,细胞活力检测(CCK-8)实验检测PEA3EPHA2对细胞增殖能力的影响,定量反转录聚合酶连锁反应(qRT-PCR)实验检测Wnt/β-catenin通路下游基因转录因子4(TCF-4)、淋巴细胞增强结合因子1(LEF1)表达水平。

结果

Western blotting实验结果显示:与空白组相比,EPHA2EPHA2干扰组中表达量降低,PEA3PEA3干扰组和EPHA2干扰组中表达量降低,差异均具有统计学意义(P<0.05);5组细胞Wnt1、β-catenin蛋白表达量比较,差异无统计学意义(P>0.05)。CCK-8实验结果显示,与空白组相比,PEA3干扰组和EPHA2干扰组的细胞增殖率明显下降,差异均有统计学意义(P<0.05)。qRT-PCR结果显示,TCF-4LEF1基因在PEA3干扰组、EPHA2干扰组中表达量下降,差异均有统计学意义(P<0.05)。

结论

通过干扰PEA3EPHA2基因可降低胶质母细胞瘤的增殖能力,但PEA3EPHA2是否通过Wnt/β-catenin通路促进胶质母细胞瘤的增殖能力值得进一步研究证实。

Objective

To explore the expression of polyomavirus enhancer activator 3 (PEA3) and erythropoietin-producting hepatocellular receptor 2 (EPHA2) in glioblastoma and their expression in Wnt/β-catenin pathway.

Methods

A gene transfection model of U87 glioma cells was constructed, and the cell lines were divided into 5 groups: blank group, PEA3 interference group, PEA3 interference empty group, EPHA2 interference group, and EPHA2 interference empty group. The protein expression levels of EPHA2 and PEA3 in U87 cells were detected through Western blotting experiments; The proliferation rate was detected by CCK-8 test, and the the expression levels of T cytokines factor-4 (TCF-4) and lymph enhancer factor 1 (LEF1) genes, the downstream genes of Wnt/β-catenin pathway, were detected by quantitative real time polymerase chain reaction (qRT-PCR) assay.

Results

The Western blotting experiment showed that compared with the blank group, the expression level of PEA3 was reduced in the PEA3 interference group and EPHA2 interference group, while the expression level of EPHA2 was reduced in the EPHA2 interference group, and the differences were statistically significant (P<0.05); There was no statistically significant difference in the expression levels of Wnt1 and β-catenin proteins among 5 groups (P>0.05). The CCK-8 experiment showed that compared with the blank group, the cell proliferation rates of the PEA3 interference group and the EPHA2 interference group were significantly reduced, and the differences were statistically significant (P<0.05). The qRT-PCR results showed that the expression levels of TCF-4 and LEF1 genes decreased in the PEA3 interference group and EPHA2 interference group, and the differences were statistically significant (P<0.05).

Conclusion

Interference with PEA3 and EPHA2 genes can reduce the proliferation ability of glioblastoma; whether PEA3 and EPHA2 promote the proliferative capacity of glioblastoma through the Wnt/β-catenin pathway deserves further investigation.

表1 引物序列
Tab.1 Primer sequence
图1 U87细胞质粒转染图(×400)A:空白组;B:PEA3干扰组;C:PEA3干扰空载组;D:EPHA2干扰组;E:EPHA2干扰空载组
Fig.1 Plasmid transfection map of U87 cells (×400)
图2 PEA3EPHA2基因转染效率检测结果与空白组比较,aP<0.05
Fig.2 Detection of transfection efficiency of PEA3 and EPHA2 genes
图3 5组细胞中EPHA2、PEA3、Wnt1、β-catenin蛋白Western blotting结果
Fig.3 Western blotting results of EPHA2, PEA3, Wnt1, β-catenin of 5 groups
图4 5组细胞中EPHA2、PEA3、Wnt1、β-catenin蛋白表达水平比较A:EPHA2;B:PEA3;C:Wnt1;D:β-catenin;与空白组比较,aP<0.05
Fig.4 Expression levels of EPHA2, PEA3, Wnt1, β-catenin protein in 5 groups
图5 5组细胞增殖率比较与空白组比较,aP<0.05
Fig.5 Comparison of cell proliferation rates among 5 groups
图6 5组细胞TCF-4LEF1基因表达量比较A:TCF-4;B:LEF1;与空白组比较,aP<0.05
Fig.6 Comparison of expression levels of TCF-4 and LEF1 genes in 5 groups
[1]
Wasylyk C, Flores P, Gutman A, et al. PEA3 is a nuclear target for transcription activation by non-nuclear oncogenes[J]. EMBO J, 1989, 8(11): 3371-3378. DOI: 10.1002/j.1460-2075.1989.tb08500.x.
[2]
Kandemir B, Caglayan B, Hausott B, et al. Pea3 transcription factor promotes neurite outgrowth[J]. Front Mol Neurosci, 2014, 7: 59. DOI: 10.3389/fnmol.2014.00059.
[3]
Huang C, Yuan W, Lai C, et al. EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance[J]. Int J Cancer, 2020, 146(7): 1937-1949. DOI: 10.1002/ijc.32609.
[4]
Huang J, Xiao D, Li G, et al. EphA2 promotes epithelial-mesenchymal transition through the Wnt/beta-catenin pathway in gastric cancer cells[J]. Oncogene, 2014, 33(21): 2737-2347. DOI: 10.1038/onc.2013.238.
[5]
Qi T, Qu Q, Li G, et al. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer[J]. Am J Cancer Res, 2020, 10(10): 3083-3105.
[6]
Chen JH, Wright CD. PEA3, Oct 1 and Oct 2 positively regulate the human ETS1 promoter[J]. Oncogene, 1993, 8(12): 3375-3383.
[7]
Kherrouche Z, Monte D, Werkmeister E, et al. PEA3 transcription factors are downstream effectors of Met signaling involved in migration and invasiveness of Met-addicted tumor cells[J]. Mol Oncol, 2015, 9(9): 1852-1867. DOI: 10.1016/j.molonc.2015.07.001.
[8]
Miao H, Gale NW, Guo H, et al. EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties[J]. Oncogene, 2015, 34(5): 558-567. DOI: 10.1038/onc.2013.590.
[9]
Davidson B, Goldberg I, Gotlieb WH, et al. PEA3 is the second Ets family transcription factor involved in tumor progression in ovarian carcinoma[J]. Clin Cancer Res, 2003, 9(4): 1412-1419.
[10]
Hu J, Zhu W, Wei B, et al. Antitumoral action of icaritin in LNCaP prostate cancer cells by regulating PEA3/HER2/AR signaling[J]. Anti-cancer drugs, 2016, 27(10): 944-952. DOI: 10.1097/CAD.0000000000000420.
[11]
Kim HJ, Kim SH, Yu EJ, et al. A positive role of DBC1 in PEA3-mediated progression of estrogen receptor-negative breast cancer[J]. Oncogene, 2015, 34(34): 4500-4508. DOI: 10.1038/onc.2014.381.
[12]
Ladam F, Damour I, Dumont P, et al. Loss of a negative feedback loop involving pea3 and cyclin d2 is required for pea3-induced migration in transformed mammary epithelial cells[J]. Mol Cancer Res, 2013, 11(11): 1412-1424. DOI: 10.1158/1541-7786.MCR-13-0229.
[13]
Jonckheere S, Adams J, De Groote D, et al. Epithelial-Mesenchymal Transition (EMT) as a therapeutic target[J]. Cells Tissues Organs, 2022, 211(2): 157-182. DOI: 10.1159/000512218.
[14]
Olsen I. Role of EphA2 in host defense against oro-pharyngeal candidiasis[J]. J Oral Microbiol, 2020, 12(1): 1711619. DOI: 10.1080/20002297.2020.1711619.
[15]
Mitra D, Bhattacharyya S, Alam N, et al. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast[J]. Breast Cancer Res Treat, 2020, 179(2): 359-370. DOI: 10.1007/s10549-019-05482-8.
[16]
Wang LF, Fokas E, Bieker M, et al. Increased expression of EphA2 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients[J]. Oncol Rep, 2008, 19(1): 151-156.
[17]
Moyano-Galceran L, Pietila EA, Turunen SP, et al. Adaptive RSK-EphA2-GPRC5A signaling switch triggers chemotherapy resistance in ovarian cancer[J]. EMBO Mol Med, 2020, 12(4): e11177. DOI: 10.15252/emmm.201911177.
[18]
Ratovitski EA. LKB1/PEA3/ΔNp63 pathway regulates PTGS-2 (COX-2) transcription in lung cancer cells upon cigarette smoke exposure[J]. Oxid Med Cell Longev, 2010, 3(5): 317-324. DOI: 10.4161/oxim.3.5.13108.
[19]
Shen L, Sun R, Kan S, et al. EphA2, vascular endothelial growth factor, and vascular endothelial growth factor correlate with adverse outcomes and poor survival in patients with glioma[J]. Medicine (Baltimore), 2021, 100(3): e23985. DOI: 10.1097/MD.0000000000023985.
[20]
Wu Q, Xu L, Wang C, et al. MicroRNA-124-3p represses cell growth and cell motility by targeting EphA2 in glioma[J]. Biochem Biophys Res Commun, 2018, 503(4): 2436-2442. DOI: 10.1016/j.bbrc.2018.06.173.
[21]
Huang J, He Y, Mcleod HL, et al. miR-302b inhibits tumorigenesis by targeting EphA2 via Wnt/β-catenin/EMT signaling cascade in gastric cancer[J]. BMC Cancer, 2017, 17(1): 886. DOI: 10.1186/s12885-017-3875-3.
[22]
Shang X, Lin X, Howell SB. Claudin-4 controls the receptor tyrosine kinase EphA2 pro-oncogenic switch through β-catenin[J]. Cell Commun Signal, 2014, 12: 59. DOI: 10.1186/s12964-014-0059-5.
[23]
Nie Q, Peng WW, Wang Y, et al. β-catenin correlates with the progression of colon cancers and berberine inhibits the proliferation of colon cancer cells by regulating the β-catenin signaling pathway[J]. Gene, 2022, 818: 146207. DOI: 10.1016/j.gene.2022.146207.
[24]
Arend RC, Londoño-Joshi AI, Straughn JM Jr, et al. The Wnt/β-catenin pathway in ovarian cancer: a review[J]. Gynecol Oncol, 2013, 131(3): 772-779. DOI: 10.1016/j.ygyno.2013.09.034.
[25]
Tang D, He Y, Li W, et al. Wnt/β-catenin interacts with the FGF pathway to promote proliferation and regenerative cell proliferation in the zebrafish lateral line neuromast[J]. Exp Mol Med, 2019, 51(5): 1-16. DOI: 10.1038/s12276-019-0247-x.
[26]
Fei YQ, Shi RT, Zhou YF, et al. Mannose inhibits proliferation and promotes apoptosis to enhance sensitivity of glioma cells to temozolomide through Wnt/β-catenin signaling pathway[J]. Neurochem Int, 2022, 157: 105348. DOI: 10.1016/j.neuint.2022.105348.
[27]
Peng Q, Chen L, Wu W, et al. EPH receptor A2 governs a feedback loop that activates Wnt/β-catenin signaling in gastric cancer[J]. Cell Death Dis, 2018, 9(12): 1146. DOI: 10.1038/s41419-018-1164-y.
[1] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[2] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[3] 冯巍, 袁喜平, 胡丙宇, 刘金涛, 商东升. 外伤后进展性胶质母细胞瘤一例报道并文献复习[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 59-60.
[4] 周兴旺, 刘艳辉. 老年胶质母细胞瘤的治疗进展[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 321-324.
[5] 孙明阳, 刘艳坤, 陈思, 李玉凤, 李玉辉. NHE1抑制剂改善胶质母细胞瘤细胞对替莫唑胺耐药性的研究[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 261-265.
[6] 林发牧, 邓燕婷, 梁玉明, 简志聪, 邓妙峰, 陈耿树, 麦剑培, 钱卫添, 元少鹏, 胡建军. CLSPN在胶质瘤中的表达及生物学功能[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 235-241.
[7] 张婵, 薛强, 田锐锋, 陈晓燕. Kir4.1在恶性胶质瘤中的表达及其潜在作用:数据库结合文献分析[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 224-234.
[8] 李玉辉, 赵喜庆, 陈思, 刘岩, 刘艳坤, 李玉凤. 阻断NHE1抑制人胶质母细胞瘤细胞增殖和侵袭的研究[J]. 中华神经创伤外科电子杂志, 2020, 06(01): 39-43.
[9] 李玉辉, 赵喜庆, 陆丽娟, 刘艳坤, 刘岩, 胡万宁, 李玉凤. β-TrCP1和HAUSP影响胶质母细胞瘤细胞增殖和侵袭并调控UHRF1蛋白水平[J]. 中华神经创伤外科电子杂志, 2019, 05(04): 233-238.
[10] 贾伟强, 王兆涛, 徐如祥. 毛蕊花糖苷上调SHP1表达抑制STAT3磷酸化治疗胶质母细胞瘤的分子机制研究[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 285-293.
[11] 曹奕强, 王永刚, 龙江. 肿瘤治疗电场治疗胶质母细胞瘤的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 234-238.
[12] 李彦钊, 张绪新, 孙晶, 郎明非, 任刚, 邓东风. 基于微流控平台的胶质母细胞瘤干细胞中miRNA-874表达的研究[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(04): 205-208.
[13] 刘娟, 朱吉高, 王立兴, 沈力, 傅剑雄. 增强磁共振成像纹理参数对胶质母细胞瘤、原发性中枢神经系统淋巴瘤和单发转移瘤的鉴别诊断价值[J]. 中华消化病与影像杂志(电子版), 2021, 11(02): 61-66.
[14] 林敏, 宋璐, 秦书明, 侯刚. 胶质肉瘤五例临床病理分析及文献复习[J]. 中华临床医师杂志(电子版), 2019, 13(06): 473-477.
[15] 叶飞龙, 杨冠英, 王伟. 对流增强给药治疗胶质母细胞瘤的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 287-292.
阅读次数
全文


摘要