切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (01) : 31 -37. doi: 10.3877/cma.j.issn.2095-123X.2025.01.006

临床研究

轻型创伤性脑损伤患者早期病情恶化的影响因素分析
刘昕1, 张至君1, 王绅2, 张敏3, 王如海4,(), 彭丽1, 张高健1   
  1. 1. 236400 阜阳,临泉县人民医院神经外科
    2. 730000 兰州,兰州大学第一临床医学院
    3. 236112 阜阳,安徽医科大学附属阜阳医院检验科
    4. 236000 阜阳,阜阳师范大学附属第二医院神经外科
  • 收稿日期:2024-10-03 出版日期:2025-02-15
  • 通信作者: 王如海
  • 基金资助:
    阜阳市卫生健康委科研立项项目(FY2023-019)阜阳师范大学横向医学研究专项项目(2024FYNUEY05)

Analysis of influencing factors of early deterioration in patients with mild traumatic brain injury

Xin Liu1, Zhijun Zhang1, Shen Wang2, Min Zhang3, Ruha Wang4,(), Li Peng1, Gaojian Zhang1   

  1. 1. Department of Neurosurgery, Linquan County People's Hospital, Fuyang 236400, China
    2. The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
    3. Department of Clinical Laboratory,Fuyang Hospital of Anhui Medical University, Fuyang 236112, China
    4. Department of Neurosurgery, the Second Affiliated Hospital of Fuyang Normal University, Fuyang 236000, China
  • Received:2024-10-03 Published:2025-02-15
  • Corresponding author: Ruha Wang
引用本文:

刘昕, 张至君, 王绅, 张敏, 王如海, 彭丽, 张高健. 轻型创伤性脑损伤患者早期病情恶化的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 31-37.

Xin Liu, Zhijun Zhang, Shen Wang, Min Zhang, Ruha Wang, Li Peng, Gaojian Zhang. Analysis of influencing factors of early deterioration in patients with mild traumatic brain injury[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(01): 31-37.

目的

探讨轻型创伤性脑损伤(mTBI)患者早期病情恶化的影响因素。

方法

回顾性分析临泉县人民医院神经外科自2021年1月至2024年8月收治的264例mTBI患者的临床资料。根据伤后3 d内是否出现病情恶化将mTBI患者分为恶化组和非恶化组。通过单因素分析和多因素Logistic回归分析,揭示mTBI患者早期病情恶化的独立影响因素,并构建Logistic回归预测模型。使用受试者特征工作(ROC)曲线评价不同影响因素对病情恶化的预测能力。使用bootstrap法对预测模型进行内部验证。

结果

264例mTBI患者中,26例患者在伤后3 d内出现病情恶化(恶化组),病情恶化发生率为9.8%,余238例患者为非恶化组。恶化组患者复发性呕吐、首次CT扫描时间、入院GCS评分、颅骨骨折、中性粒细胞-淋巴细胞比值(NLR)、纤维蛋白原水平、D-二聚体水平与非恶化组比较,差异有统计学意义(P<0.05)。多因素Logistic回归分析显示,复发性呕吐、首次CT扫描时间、入院GCS评分、NLR、D-二聚体是mTBI早期病情恶化的独立影响因素(均P<0.05)。上述指标预测早期病情恶化的ROC曲线下面积(AUC)分别为0.677、0.803(截断值为2.2 h)、0.764(截断值为14分)、0.753(截断值为6.9)、0.812(截断值为8.6 mg/L),所有指标联合预测早期病情恶化的AUC为0.928(95%CI:0.890~0.956,P<0.001)。

结论

复发性呕吐、首次CT扫描时间、入院GCS评分、NLR、D-二聚体是mTBI患者早期病情恶化的独立影响因素,联合应用可提高对早期病情恶化的预测价值。

Objective

To investigate influencing factors of early deterioration in patients with mild traumatic brain injury (mTBI).

Methods

Clinical data of 264 mTBI patients admitted to Department of Neurosurgery, Linquan County People's Hospital from January 2021 to August 2024 were retrospectively analyzed. The mTBI patients were divided into the deterioration group (26 cases) and the non- deterioration group (238 cases) deponding on whether the patients suffered from deterioration of the condition within 3 d after injury. Independent influencing factors of early deterioration in mTBI patients were revealed by univariate and multivariate Logistic regression analysis. Logistic regression prediction model was constructed based on the above independent influencing factors. Receiver operating characteristic (ROC) curve and area under curve (AUC) were used to evaluate the ability of different influencing factors to predict early deterioration. Internal validation of the prediction model was used by bootstrap analysis.

Results

Among 264 mTBI patients, 26 cases showed deterioration within 3 d after injury (the deterioration group), and the incidence of deterioration was 9.8%, the remaining 238 patients were in the non-deterioration group. There was statistically significant difference in recurrent vomiting,first CT scan time, GCS score on admission, skull fracture, neutrophil-to-lymphocyte ratio (NLR), level of fibrinogen (FIB), and level of D-dimer between the two groups (P<0.05). Multivariate Logistic regression analysis showed that recurrent vomiting, first CT scan time, GCS score on admission, NLR, D-dimer were independent influencing factors for early deterioration. ROC curves showed that areas under the curve(AUC) of those independent influencing factors were 0.677, 0.803 (2.2 h as the threshold for first CT scan time), 0.764 (14 scores as the threshold for GCS score on admission), 0.753 (6.9 as the threshold for NLR),0.812 (8.6 mg/L as the threshold for D-dimer). The AUC of the influencing factors combined to predict early deterioration was 0.928 (95%CI: 0.890-0.956, P<0.001).

Conclusion

Recurrent vomiting, first CT scan time, GCS score on admission, NLR and D-dimer are independent influencing factors for early deterioration in mTBI patients. These indexes could be jointly used to improve the predictive value for early deterioration.

表1 264例mTBI患者临床特征及相关因素的比较
Tab.1 Comparison of clinical features and related factors in 264 patients with mTBI
项目 恶化组(n=26) 非恶化组(n=238) χ 2/t/Z P
性别[例(%)] 0.038 0.845
17(65.4) 151(63.4)
9(34.6) 87(36.6)
年龄(岁,Mean±SD 57.7±13.2 59.0±14.4 -0.454 0.650
致伤原因[例(%)] 1.426 0.490
交通伤 9(34.6) 108(45.4)
摔跌 7(26.9) 45(18.9)
其他 10(38.5) 85(35.7)
基础疾病[例(%)]
高血压 5(19.2) 57(23.9) 0.290 0.590
糖尿病 5(19.2) 27(11.3) 1.369 0.242
复发性呕吐[例(%)] 20(76.9) 99(41.6) 11.815 0.001
首次CT扫描时间[h,MP25P75)] 1.5(1.1,2.2) 2.4(1.6,3.2) -5.074 <0.001
入院GCS评分(分,Mean±SD 13.0(13.0,13.3) 14.0(13.0,15.0) -4.684 <0.001
头皮损伤类型[例(%)]
头皮血肿 15(57.7) 143(60.1) 0.056 0.813
头皮裂伤 13(50.0) 101(42.4) 0.546 0.460
骨折类型[例(%)]
颅骨骨折 20(76.9) 127(53.4) 5.273 0.022
颅底骨折 7(26.9) 47(19.7) 0.742 0.389
生命体征[MP25P75)]
体温(℃) 36.5(36.5,36.8) 36.6(36.5,36.8) -1.069 0.285
脉搏(次) 76.0(65.3,80.3) 77.0(69.0,85.0) -1.400 0.162
呼吸(次) 17.0(15.0,20.0) 17.0(15.0,20.0) -0.094 0.925
收缩压(mmHg) 134.1(122.7,142.8) 131.6(118.8,143.5) -0.249 0.803
舒张压(mmHg) 67.2(59.3,74.0) 67.2(59.3,77.0) -0.804 0.422
实验室检查[MP25P75)]
NLR 9.1(7.2,12.9) 3.7(2.1,8.8) -4.227 <0.001
PLR 171.9(128.8,342.6) 217.0(130.5,380.6) -0.720 0.472
MLR 0.6(0.5,1.3) 0.7(0.5,1.3) -0.670 0.503
GPR 2.4(1.8,3.0) 2.2(1.8,2.6) -1.244 0.213
血清总钙浓度(mmol/L) 2.3(2.2,2.4) 2.3(2.2,2.4) -0.168 0.867
TT(s) 16.9(15.6,18.7) 16.8(15.4,18.3) -0.242 0.809
PT(s) 12.3(11.1,13.4) 11.8(11.0,12.6) -1.363 0.173
INR 1.1(1.0,1.2) 1.1(1.0,1.1) -0.213 0.832
APTT(s) 30.4(23.6,35.4) 27.9(25.9,30.4) -0.897 0.370
FIB(g/L) 2.6(2.3,2.8) 2.9(2.4,3.4) -2.444 0.015
D-二聚体(mg/L) 26.0(9.4,46.3) 4.1(1.9,10.7) -5.232 <0.001
表2 mTBI患者早期病情恶化的多因素Logistic回归分析
Tab.2 Multivariate Logistic regression analysis of early deterioration in mTBI patients
图1 影响因素对mTBI患者早期病情恶化预测能力的ROC曲线分析
Fig.1 ROC curve analysis of the predictive value of influencing factors on the occurrence of early deterioration in mTBI patients
图2 mTBI患者早期病情恶化预测模型的验证结果
Fig.2 Verification results of the prediction model for early deterioration of mTBI patients
表3 影响因素预测mTBI患者早期病情恶化的ROC曲线结果
Tab.3 ROC curve results of influencing factors predicting early deterioration of mTBI patients
[1]
阮霄睿, 成佩霞, 胡国清. 2000-2019年我国颅脑创伤的发病率与患病率趋势分析[J]. 中华神经外科杂志, 2021, 37(12): 1223-1229. DOI: 10.3760/cma.j.cn112050-20210509-00223.Ruan XR, Cheng PX, Hu GQ. Analysis of trends in incidence and prevalence of traumatic brain injury in China from 2000 to 2019[J]. Chin J Neurosurg, 2021, 37(12): 1223-1229. DOI: 10.3760/cma.j.cn112050-20210509-00223.
[2]
张薇, 郭姗姗. 轻型创伤性脑损伤远期后遗症流行病学的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(2): 117-121.DOI: 10.3877/cma.j.issn.2095-9141.2024.02.010.Zhang W, Guo SS. Epidemiology study progress of forward sequela of mild traumatic brain injury[J]. Chin J Neurotrauma Surg (Electronic Edition), 2024, 10(2): 117-121. DOI: 10.3877/cma.j.issn.2095-9141.2024.02.010.
[3]
Haarbauer-Krupa J, Pugh MJ, Prager EM, et al. Epidemiology of chronic effects of traumatic brain injury[J]. J Neurotrauma, 2021,38(23): 3235-3247. DOI: 10.1089/neu.2021.0062.
[4]
王如海, 王绅, 张敏, 等. 中型创伤性脑损伤患者早期神经功能恶化的危险因素及其预警效能分析[J]. 中华创伤杂志, 2023,39(11): 1006-1013. DOI: 10.3760/cma.j.cn501098-20230710-00399.Wang RH, Wang S, Zhang M, et al. Risk factors and their early warning effectiveness for the occurrence of early neurological deterioration in patients with moderate traumatic brain injury[J].Chin J Trauma, 2023, 39(11): 1006-1013. DOI: 10.3760/cma.j.cn501098-20230710-00399.
[5]
王如海, 曹祥记, 王绅, 等. 凝血指标对中型创伤性脑损伤患者进展性出血性损伤的预测能力[J]. 中华神经创伤外科电子杂志, 2023, 9(6): 343-349. DOI: 10.3877/cma.j.issn.2095-9141.2023.06.005.Wang RH, Cao XJ, Wang S, et al. Predictive ability of coagulation tests for progressive hemorrhagic injury in patients with moderate traumatic brain injury[J]. Chin J Neurotrauma Surg (Electronic Edition), 2023, 9(6): 343-349. DOI: 10.3877/cma.j.issn.2095-9141.2023.06.005.
[6]
Lang L, Wang T, Xie L, et al. An independently validated nomogram for individualised estimation of short-term mortality risk among patients with severe traumatic brain injury: a modelling analysis of the CENTER-TBI China registry study[J].EClinicalMedicine, 2023, 59: 101975. DOI: 10.1016/j.eclinm.2023.101975.
[7]
Wu X, Sun Y, Xu X, et al. Mortality prediction in severe traumatic brain injury using traditional and machine learning algorithms[J].J Neurotrauma, 2023, 40(13-14): 1366-1375. DOI: 10.1089/neu.2022.0221.
[8]
Mikolić A, Steyerberg EW, Polinder S, et al. Prognostic models for global functional outcome and post-concussion symptoms following mild traumatic brain injury: a collaborative European neurotrauma effectiveness research in traumatic brain injury(CENTER-TBI) study[J]. J Neurotrauma, 2023, 40(15-16): 1651-1670. DOI: 10.1089/neu.2022.0320.
[9]
Yue JK, Satris GG, Dalle Ore CL, et al. Polytrauma is associated with increased three- and six-month disability after traumatic brain injury: a TRACK-TBI pilot study[J]. Neurotrauma Rep,2020, 1(1): 32-41. DOI: 10.1089/neur.2020.0004.
[10]
Marincowitz C, Lecky FE, Townend W, et al. The risk of deterioration in GCS13-15 patients with traumatic brain injury identified by computed tomography imaging: a systematic review and meta-analysis[J]. J Neurotrauma, 2018, 35(5): 703-718. DOI:10.1089/neu.2017.5259.
[11]
Maas AIR, Menon DK, Manley GT, et al. Traumatic brain injury:progress and challenges in prevention, clinical care, and research[J]. Lancet Neurol, 2022, 21(11): 1004-1060. DOI: 10.1016/s1474-4422(22)00309-x.
[12]
Chen M, Li Z, Yan Z, et al. Predicting neurological deterioration after moderate traumatic brain injury: development and validation of a prediction model based on data collected on admission[J]. J Neurotrauma, 2022, 39(5-6): 371-378. DOI: 10.1089/neu.2021.0360.
[13]
闫志丰, 陈明生, 葛顺楠, 等. 中型颅脑创伤预后的危险因素分析[J]. 空军军医大学学报, 2022, 43(4): 432-435, 439. DOI:10.13276/j.issn.2097-1656.2022.04.009.Yan ZF, Chen MS, Ge SN, et al. Analysis of prognostic risk factors of moderate traumatic brain injury[J]. J Air Force Med Univ,2022, 43(4): 432-435, 439. DOI: 10.13276/j.issn.2097-1656.2022.04.009.
[14]
Undén J, Ingebrigtsen T, Romner B. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update[J]. BMC Med,2013, 11: 50. DOI: 10.1186/1741-7015-11-50.
[15]
Tong WS, Zheng P, Xu JF, et al. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury[J].Neuroradiology, 2011, 53(5): 305-309. DOI: 10.1007/s00234-010-0659-8.
[16]
Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective,multicentre, longitudinal, observational study[J]. Lancet Neurol,2020, 19(8): 670-677. DOI: 10.1016/s1474-4422(20)30182-4.
[17]
李世安, 李爱民, 陈军, 等. 中性粒细胞/淋巴细胞及血小板/淋巴细胞比值对脑损伤后进展性出血的预测价值[J]. 临床神经外科杂志, 2018, 15(2): 147-151. DOI: 10.3969/j.issn.1672-7770.2018.02.016.Li SA, Li AM, Chen J, et al. The predictive values in ratio of neutrophil to lymphocyte, platelet to lymphocyte for the progressive hemorrhagic injury after traumatic brain injury[J]. J Clin Neurosurg, 2018, 15(2): 147-151. DOI: 10.3969/j.issn.1672-7770.2018.02.016.
[18]
Lv XN, Li ZQ, Li Q. Blood-based biomarkers in intracerebral hemorrhage[J]. J Clin Med, 2023, 12(20): 6562. DOI: 10.3390/jcm12206562.
[19]
Liu L, Dong X, Liu Y, et al. Predictive value of white blood cell to hemoglobin ratio for 30-day mortality in patients with severe intracerebral hemorrhage[J]. Front Neurol, 2023, 14: 1222717. DOI:10.3389/fneur.2023.1222717.
[20]
Zhu ZY, Hao LF, Gao LC, et al. Determinants of acute and subacute case-fatality in elderly patients with hypertensive intracerebral hemorrhage[J]. Heliyon, 2023, 9(10): e20781. DOI:10.1016/j.heliyon.2023.e20781.
[21]
Chen W, Wang G, Yao C, et al. The ratio of serum neuron-specific enolase level to admission Glasgow coma scale score is associated with diffuse axonal injury in patients with moderate to severe traumatic brain injury[J]. Front Neurol, 2022, 13: 887818. DOI:10.3389/fneur.2022.887818.
[22]
Sabouri M, Vahidian M, Sourani A, et al. Efficacy and safety of fibrinogen administration in acute post-traumatic hypofibrinogenemia in isolated severe traumatic brain injury: a randomized clinical trial[J]. J Clin Neurosci, 2022, 101: 204-211. DOI: 10.1016/j.jocn.2022.05.016.
[23]
Fair KA, Farrell DH, McCully BH, et al. Fibrinolytic activation in patients with progressive intracranial hemorrhage after traumatic brain injury[J]. J Neurotrauma, 2021, 38(8): 960-966. DOI: 10.1089/neu.2018.6234.
[24]
Karsy M, Kim R, Azab M, et al. Higher admission D-Dimer values are associated with an increased risk of nonroutine discharge in neurosurgery patients[J]. Cureus, 2020, 12(7): e9425. DOI: 10.7759/cureus.9425.
[25]
Wang R, Yang DX, Ding J, et al. Classification, risk factors, and outcomes of patients with progressive hemorrhagic injury after traumatic brain injury[J]. BMC Neurol, 2023, 23(1): 68. DOI:10.1186/s12883-023-03112-x.
[1] 王琪, 杨春凤, 宋宏萍, 许磊. 2021 至2023 年陕西省渭北农村地区基于超声的乳腺癌筛查结果及影响因素分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 106-113.
[2] 王昕玥, 袁亚, 束华, 曹琨芃, 叶新华, 李璐. 基于LightGBM 算法构建超声引导下凝血酶治疗假性动脉瘤剂量预测模型[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 153-161.
[3] 余静雅, 石玉兰, 向利娟, 陈城, 罗钰堞. 老年慢性创面患者衰弱现状及影响因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 141-147.
[4] 王占奎, 陈治远, 孙闻晖, 杨庆玲, 杨小斌. 术前免疫炎症指数及AFU水平对肝癌患者介入术后早期复发的预测研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 247-250.
[5] 袁强, 张华宇, 闫璋哲, 朱含放, 陈光, 孙亮, 吕远, 陈纲, 赵锁. cN0峡部偏侧甲状腺乳头状癌中央区淋巴结转移的术前预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 333-336.
[6] 朱宗恒, 张志火. 甲状腺乳头状癌对侧中央区淋巴结转移的危险因素分析及预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 337-340.
[7] 沈丹枫, 常鹏, 陆颖超, 徐红星, 顾强. PCT、CRP对急性胆管炎严重程度的早期预测价值及列线图模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(02): 192-195.
[8] 刘欣, 刘雪萍, 焦玉丁, 任茂玲, 何永琴. 慢性阻塞性肺疾病并发呼吸衰竭风险预测模型的Meta 分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 110-114.
[9] 陈庆贤, 蔡林再, 林红满, 郑玉, 陈青青. 海南西部地区慢性阻塞性肺疾病服药依从性影响因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 157-160.
[10] 刘春熠, 孙齐, 史中巍, 黄静. 日间腹腔镜胆囊切除术患者术后恶心呕吐的影响因素与防治[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 245-249.
[11] 李鑫, 李乐, 陈金明, 刘蕊. 基于Meta 分析构建肝癌微血管侵犯的术前预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 74-80.
[12] 任船, 葛荣忠, 邱正才, 朱莉. 肠癌患者术后代谢性酸中毒的预测模型构建及应用价值评价[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 34-39.
[13] 王春莹, 江永强, 韩海静, 苏红霞, 李转, 党飞, 折彤, 屈耀宁. 血清SAA、sIL-2R水平与内镜逆行胰胆管造影术后胰腺炎严重程度的相关性及预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 46-50.
[14] 张强, 孙如初, 梁璐. 困难气道生理评分对急诊生理性困难气道的预测价值[J/OL]. 中华临床医师杂志(电子版), 2025, 19(01): 20-26.
[15] 周俊, 王文, 臧银善, 徐艳. 阿达木单抗治疗类风湿关节炎临床疗效预测因素的研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(01): 41-47.
阅读次数
全文


摘要