切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 134 -147. doi: 10.3877/cma.j.issn.2095-123X.2025.03.002

功能神经外科

丹参酮ⅡA抑制焦亡通路改善糖尿病周围神经病变的分子机制研究
李思彤, 高振轩, 刘佳鑫, 张泽, 金泉宇, 施歌, 阿尔曼·阿卜杜热扎克, 寇蕾, 张黎()   
  1. 100020 北京,中日友好医院神经外科
  • 收稿日期:2025-05-29 出版日期:2025-06-15
  • 通信作者: 张黎

Tanshinone ⅡA ameliorates diabetic peripheral neuropathy via suppressing NLRP3 inflammasome-mediated pyroptosis

Sitong Li, Zhenxuan Gao, Jiaxin Liu, Ze Zhang, Quanyu Jin, Ge Shi, Abudurezhake Aerman, Lei Kou, Li Zhang()   

  1. Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100020, China
  • Received:2025-05-29 Published:2025-06-15
  • Corresponding author: Li Zhang
  • Supported by:
    National Natural Science Foundation of China(8197141160)
引用本文:

李思彤, 高振轩, 刘佳鑫, 张泽, 金泉宇, 施歌, 阿尔曼·阿卜杜热扎克, 寇蕾, 张黎. 丹参酮ⅡA抑制焦亡通路改善糖尿病周围神经病变的分子机制研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 134-147.

Sitong Li, Zhenxuan Gao, Jiaxin Liu, Ze Zhang, Quanyu Jin, Ge Shi, Abudurezhake Aerman, Lei Kou, Li Zhang. Tanshinone ⅡA ameliorates diabetic peripheral neuropathy via suppressing NLRP3 inflammasome-mediated pyroptosis[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(03): 134-147.

目的

探讨丹参酮ⅡA(TIIA)通过调控焦亡通路改善糖尿病周围神经病变(DPN)的作用机制。

方法

(1)通过高脂饮食联合链脲佐菌素(STZ)构建2型糖尿病(T2DM)-DPN小鼠模型,将小鼠随机分为3组:空白组、模型组(给予110 mg/kg STZ)、TIIA组(DPN模型+20 mg/kg TIIA磺酸钠注射液),每组10只;(2)疼痛行为学评估:采用Von Frey纤维丝测痛实验及Hargreaves试验的行为学测试评估3组小鼠的机械痛觉敏感性及热痛觉敏感性;(3)将小鼠的坐骨神经通过HE染色、LFB髓鞘染色和透射电子显微镜(TEM)观察髓鞘轴突的组织学变化;(4)通过免疫荧光染色观察神经元标志物PGP9.5在3组小鼠足底皮肤表皮内神经纤维(IENF)的表达;(5)通过Western blot实验和免疫荧光实验方法检测3组小鼠的坐骨神经的核苷酸结合域样受体蛋白3(NLRP-3)、凋亡相关颗粒样蛋白(ASC)、Gasdermin-D(GSDMD)、半胱天冬酶-1(Caspase-1)和白介素-1β(IL-1β)蛋白的表达;(6)体外培养RSC96细胞并构建高糖损伤模型;(7)通过乳酸脱氢酶(LDH)细胞毒性实验测定不同药物浓度(5、10、20和40 µmol/L)对细胞活性的影响,并筛选最佳药物浓度;(8)将细胞系分为3组:空白组(5.5 mmol/L葡萄糖培养)、模型组(50 mmol/L葡萄糖培养)和TIIA组(50 mmol/L葡萄糖+20 µmol/L TIIA);(9)通过流式细胞术检测3组细胞内的荧光探针DCFH-DA标记的活性氧(ROS)水平;(10)通过Western blot实验检测3组细胞的NLRP-3、ASC、GSDMD、Caspase-1和IL-1β蛋白的表达水平。

结果

(1)TIIA能够逆转长期高血糖所造成的周围神经损伤,髓鞘结构病理性改变;(2)TIIA药物治疗能够改善DPN模型小鼠IENF的缺失;(3)TIIA能够抑制高葡萄糖处理的RSC96细胞中的ROS的生成;(4)TIIA通过抑制NLRP3炎症小体组装、阻断Caspase-1/GSDMD依赖性焦亡通路,减少IL-1β等促炎因子释放,从而减轻长期高血糖所致的周围神经病理性损伤。

结论

TIIA通过减少高糖所致的细胞内异常增高的ROS水平,从而抑制焦亡信号通路改善DPN所致的周围神经损伤。

Objective

To investigate the mechanism of tanshinone ⅡA (TIIA) in improving diabetic peripheral neuropathy (DPN) by regulating pyroptosis pathway.

Methods

(1) Type 2 diabetes mellitus (T2DM)-DPN mouse models was established through high-fat diet feeding combined with intraperitoneal streptozotocin (STZ). The experimental animals were randomly divided into three groups: control group, model group (110 mg/kg STZ-induced), TIIA group (DPN model+20 mg/kg TIIA sodium sulfonate injection), with 10 mice in each group; (2) Pain behavioral assessments were conducted using Von Frey filaments for mechanical allodynia and the hot plate test to quantify thermal hyperalgesia thresholds; (3) Sciatic nerve sections underwent hematoxylin-eosin (HE) staining and Luxol fast blue (LFB) staining for myelin integrity, and transmission electron microscopy (TEM) to evaluate ultrastructural alterations in myelin-axon units; (4) Epidermal nerve fiber density in plantar skin specimens was quantified through immunofluorescence staining using anti-PGP9.5 antibodies; (5) Protein expression levels of nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate specific proteinase-1 (Caspase-1), gasdermin-D (GSDMD), and interleukin-1β (IL-1β) in sciatic nerves were quantitatively analyzed through Western blot combined with immunofluorescence assay; (6) RSC96 cells were cultured in vitro with hyperglycemic injury model established; (7) Cytotoxic effects of TIIA were assessed using lactate dehydrogenase (LDH) release assay across a concentration gradient (5, 10, 20, 40 μmol/L), with dose-response analysis identifying 20 μmol/L as the optimal therapeutic concentration for subsequent experiments; (8) Schwann cell were divided into three groups: control group (5.5 mmol/L glucose), hyperglycemic injury model group (50 mmol/L glucose), and pharmacological intervention (50 mmol/L glucose + 20 μmol/L TIIA); (9) Intracellular reactive oxygen species (ROS) levels were quantified via flow cytometry using DCFH-DA fluorescent probe; (10) The protein expression levels of NLRP-3, ASC, GSDMD, Caspase-1, and IL-1β in each group were analyze by Western blot.

Results

(1) TIIA ameliorated chronic hyperglycemia-induced myelin sheath structural pathology and neuropathic progression; (2) TIIA treatment significantly ameliorated the loss of intraepidermal nerve fibers density in DPN model mice; (3) TIIA inhibited hyperglycemia-induced ROS overproduction in RSC96 cells; (4) TIIA ameliorates chronic hyperglycemia-induced peripheral neuropathy through inhibiting suppression of NLRP3 inflammasome assembly, Caspase-1-mediated GSDMD cleavage, and subsequent IL-1β secretion, effectively disrupting the pyroptosis-inflammation axis.

Conclusions

TIIA alleviates hyperglycemia-induced peripheral neuropathic damage by scavenging intracellular ROS overaccumulation, thereby blocking NLRP3 inflammasome activation and subsequent Caspase-1/GSDMD-mediated pyroptosis in Schwann cells, ultimately preserving myelin-axon structural integrity.

图1 3组小鼠DPN症状表型的比较A:体质量;B:血糖水平;C:机械痛撤爪阈值;D:热痛反应时间;与空白组比较,aP<0.05;与模型组比较,bP<0.05;DPN:糖尿病周围神经病变;TIIA:丹参酮ⅡA
Fig.1 Comparison of DPN symptom phenotypes among 3 groups of mice
图2 3组小鼠坐骨神经病理改变的HE染色和LFB染色评估A:HE染色;B:LFB染色
Fig.2 Histopathological evaluation of sciatic nerve alterations in 3 groups using HE and LFB staining techniques
图3 3组小鼠坐骨神经髓鞘TEM超微结构的改变A:3组小鼠坐骨神经髓鞘TEM超微结构;B:异常轴突髓鞘崩解率;C:髓鞘直径;D:轴突直径;与空白组比较,aP<0.05;与模型组比较,bP<0.05;TEM:透射电子显微镜;TIIA:丹参酮ⅡA
Fig.3 TEM ultrastructural changes of sciatic nerve myelin sheath in 3 groups of mice
图4 3组小鼠足底皮肤组织PGP9.5的免疫荧光染色图A:空白组;B:模型组;C:TIIA组;TIIA:丹参酮ⅡA
Fig.4 Immunofluorescence staining of PGP9.5 in the plantar skin tissue of the 3 groups of mice
图5 3组小鼠TIIA干预2周后坐骨神经焦亡相关蛋白表达水平Western blot检测结果A:NLRP3、ASC、Caspase-1、IL-1β、GSDMD的Western blot条带图;B~F:NLRP3(B)、ASC(C)、Caspase-1(D)、IL-1β(E)、GSDMD(F)的蛋白表达水平;与空白组比较,aP<0.05;与模型组比较,bP<0.05;TIIA:丹参酮ⅡA;NLRP3:核苷酸结合域样受体蛋白3;ASC:凋亡相关颗粒样蛋白;Caspase-1:半胱天冬酶-1;IL:白介素;GSDMD:gasdermin-D
Fig.5 Expression levels of pyroptosis related proteins in sciatic nerve of three groups of mice after 2 weeks of TIIA intervention by Western blot
图6 3组小鼠TIIA干预2周后坐骨神经焦亡相关蛋白表达水平免疫荧光检测结果A~E:NLRP3(A)、ASC(B)、Caspase-1(C)、GSDMD(D)、IL-1β(E)的荧光染色图;F~J:NLRP3(F)、ASC(G)、Caspase-1(H)、GSDMD(I)、IL-1β(J)的蛋白表达水平;与空白组比较,aP<0.05;与模型组比较,bP<0.05;TIIA:丹参酮ⅡA;NLRP3:核苷酸结合域样受体蛋白3;ASC:凋亡相关颗粒样蛋白;Caspase-1:半胱天冬酶-1;GSDMD:gasdermin-D;IL:白介素
Fig.6 Expression levels of pyroptosis related proteins in sciatic nerve of three groups of mice after 2 weeks of TIIA intervention by immunofluorescence
图7 不同浓度TIIA对高糖诱导的RSC96细胞LDH释放的影响与空白组比较,aP<0.05;与模型组比较,bP<0.05;LDH:乳酸脱氢酶;TIIA:丹参酮ⅡA
Fig.7 Effect of different concentrations of TIIA on LDH release induced by high glucose in RSC96 cells
图8 3组RSC96细胞处理48 h后ROS水平比较A:3组RSC96细胞内ROS流式细胞术检测图;B:3组RSC96细胞内ROS水平统计结果;与空白组比较,aP<0.05;与模型组比较,bP<0.05;TIIA:丹参酮ⅡA;ROS:活性氧
Fig.8 Comparison of intracellular ROS levels in three groups of RSC96 cells after 48 h treatment
图9 3组RSC96细胞焦亡通路相关蛋白Western blot结果A:NLRP3、ASC、Caspase-1、IL-1β、GSDMD的Western blot条带图;B~F:NLRP3(B)、ASC(C)、Caspase-1(D)、IL-1β(E)、GSDMD(F)的蛋白表达水平;与空白组比较,aP<0.05;与模型组比较,bP<0.05;TIIA:丹参酮ⅡA;NLRP3:核苷酸结合域样受体蛋白3;ASC:凋亡相关颗粒样蛋白;Caspase-1:半胱天冬酶-1;IL:白介素;GSDMD:gasdermin-D
Fig.9 Representative Western blot images of pyroptosis-associated proteins in RSC96 cells in three groups
[1]
Jensen TS, Karlsson P, Gylfadottir SS, et al. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management[J]. Brain, 2021, 144(6): 1632-1645. DOI: 10.1093/brain/awab067.
[2]
Hanewinckel R, van Oijen M, Ikram MA, et al. The epidemiology and risk factors of chronic polyneuropathy[J]. Eur J Epidemiol, 2016, 31(1): 5-20. DOI: 10.1007/s10654-015-0088-6.
[3]
Davies M, Brophy S, Williams R, et al. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes[J]. Diabetes Care, 2006, 29(7): 1518-1522. DOI: 10.2337/dc06-0114.
[4]
Ziegler D, Rathmann W, Dickhaus T, et al. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg surveys S2 and S3[J]. Pain Med, 2009, 10(2): 393-400. DOI: 10.1111/j.1526-4637.2008.00520.x.
[5]
Gore M, Brandenburg NA, Dukes E, et al. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep[J]. J Pain Symptom Manage, 2005, 30(4): 374-385. DOI: 10.1016/j.jpainsymman.2005.06.005.
[6]
Wei KS, Gu MZ, Zhu JW, et al. Current views of diabetic peripheral neuropathic pain comorbid depression-a review[J]. Eur Rev Med Pharmacol Sci, 2020, 24(20): 10663-10670. DOI: 10.26397/er.2020.10663.
[7]
Ang L, Jaiswal M, Martin C, et al. Glucose control and diabetic neuropathy: lessons from recent large clinical trials[J]. Curr Diab Rep, 2014, 14(9): 528. DOI: 10.1007/s11906-014-0528-4.
[8]
Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial[J]. Lancet, 2010, 376(9739): 419-430. DOI: 10.1016/S0140-6736(10)60787-4.
[9]
Qureshi Z, Ali MN, Khalid M. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy[J]. J Diabetes Res, 2022, 2022: 9989272. DOI: 10.1155/2022/9989272.
[10]
Vowles KE, McEntee ML, Julnes PS, et al. Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis[J]. Pain, 2015, 156(4): 569-576. DOI: 10.1097/j.pain.0000000000000140.
[11]
Kazamel M, Stino AM, Smith AG. Metabolic syndrome and peripheral neuropathy[J]. Muscle Nerve, 2021, 63(3): 285-293. DOI: 10.1002/mus.27119.
[12]
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes[J]. Free Radic Biol Med, 2011, 50(5): 567-575. DOI: 10.1016/j.freeradbiomed.2010.12.012.
[13]
Demir S, Nawroth PP, Herzog S, et al. Emerging targets in type 2 diabetes and diabetic complications[J]. Adv Sci (Weinh), 2021, 8(18): e2100275. DOI: 10.1002/advs.202100275.
[14]
Liu XS, Fan B, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J]. Diabetes, 2017, 66(12): 3111-3121. DOI: 10.2337/db17-0320.
[15]
Cheng Y, Chen Y, Li K, et al. How inflammation dictates diabetic peripheral neuropathy: an enlightening review[J]. CNS Neurosci Ther, 2024, 30(4): e14477. DOI: 10.1111/cns.14477.
[16]
Baum P, Toyka KV, Blüher M, et al. Inflammatory mechanisms in the Pathophysiology of diabetic peripheral neuropathy (DN)-new aspects[J]. Int J Mol Sci, 2021, 22(19): 10835. DOI: 10.3390/ijms221910568.
[17]
Yang GL, Jia LQ, Wu J, et al. Effect of tanshinone IIA on oxidative stress and apoptosis in a rat model of fatty liver[J]. Exp Ther Med, 2017, 14(5): 4639-4646. DOI: 10.3892/etm-0-0-4782.
[18]
Liu Y, Wang L, Li X, et al. Tanshinone IIA improves impaired nerve functions in experimental diabetic rats[J]. Biochem Biophys Res Commun, 2010, 399(1): 49-54. DOI: 10.1016/j.bbrc.2010.09.012.
[19]
Liao YJ, Chen JM, Long JY, et al. Tanshinone IIA alleviates CCL2-induced leaning memory and cognition impairment in rats: a potential therapeutic approach for HIV-associated neurocognitive disorder[J]. Biomed Res Int, 2020, 2020: 2702175. DOI: 10.1155/2020/2702175.
[20]
Wan C, Liu XQ, Chen M, et al. Tanshinone IIA ameliorates Aβ transendothelial transportation through SIRT1-mediated endoplasmic reticulum stress[J]. J Transl Med, 2023, 21(1): 34. DOI: 10.1186/s12967-023-00034-9.
[21]
Wu Q, Guan YB, Zhang KJ, et al. Tanshinone IIA mediates protection from diabetes kidney disease by inhibiting oxidative stress induced pyroptosis[J]. J Ethnopharmacol, 2023, 316: 116667. DOI: 10.1016/j.jep.2023.116667.
[22]
Savelieff MG, Elafros MA, Viswanathan V, et al. The global and regional burden of diabetic peripheral neuropathy[J]. Nat Rev Neurol, 2025, 21(1): 17-31. DOI: 10.1038/s41581-025-00001-7.
[23]
Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy [J]. Nat Rev Endocrinol, 2021, 17(7): 400-420. DOI: 10.1038/s41591-021-00001-7.
[24]
Saedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843. DOI: 10.1016/j.diabres.2019.107843.
[25]
Aronson R, Chu L, Joseph N, et al. Prevalence and risk evaluation of diabetic complications of the foot among adults with type 1 and type 2 diabetes in a large Canadian population (PEDAL Study)[J]. Can J Diabetes, 2021, 45(7): 588-593. DOI: 10.1016/j.canjd.2021.05.001.
[26]
Cernea S, Raz I. Management of diabetic neuropathy[J]. Metabolism, 2021, 123: 154867. DOI: 10.1016/j.metabolism.2021.154867.
[27]
Li W, Liang J, Li S, et al. Research progress of targeting NLRP3 inflammasome in peripheral nerve injury and pain[J]. Int Immunopharmacol, 2022, 110: 109026. DOI: 10.1016/j.intimp.2022.109026.
[28]
Sharma A, Tate M, Mathew G, et al. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications[J]. Front Physiol, 2018, 9: 114. DOI: 10.3389/fphys.2018.00114.
[29]
Zhang X, Huang S, Zhuang Z, et al. Lipin2 ameliorates diabetic encephalopathy via suppressing JNK/ERK-mediated NLRP3 inflammasome overactivation[J]. Int Immunopharmacol, 2023, 118: 109930. DOI: 10.1016/j.intimp.2023.109930.
[30]
Xu L, Lin X, Guan M, et al. Verapamil attenuated prediabetic neuropathy in high-fat diet-fed mice through inhibiting TXNIP-mediated apoptosis and inflammation[J]. Oxid Med Cell Longev, 2019, 2019: 1896041. DOI: 10.1155/2019/1896041.
[31]
王保,姚嘉茵,尧新华, 等. 獐牙菜苦苷可减轻糖尿病大鼠的周围神经痛:基于抑制NOXS/ROS/NLRP3通路实验[J]. 南方医科大学学报, 2021, 41(6): 937-941. DOI: 10.12122/j.issn.1673-4254.2021.06.18.
[32]
Cheng YC, Chu LW, Chen JY, et al. Loganin attenuates high glucose-induced schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation[J]. Cells, 2020, 9(9): 1948. DOI: 10.3390/cells9092123.
[33]
Peng X, Chen L, Wang Z, et al. Tanshinone IIA regulates glycogen synthase kinase-3β-related signaling pathway and ameliorates memory impairment in APP/PS1 transgenic mice[J]. Eur J Pharmacol, 2022, 918: 174772. DOI: 10.1016/j.ejphar.2022.174772.
[34]
Wu J, Chen J, Ge Y, et al. Neuroprotective effect of tanshinone IIA-modified mesenchymal stem cells in a lipopolysaccharide-induced neuroinflammation model[J]. Heliyon, 2024, 10(8): e29424. DOI: 10.1016/j.heliyon.2024.e29424.
[35]
Zeng J, Gao WW, Yang H, et al. Sodium tanshinone IIA sulfonate suppresses microglia polarization and neuroinflammation possibly via regulating miR-125b-5p/STAT3 axis to ameliorate neuropathic pain[J]. Eur J Pharmacol, 2024, 972: 176523. DOI: 10.1016/j.ejphar.2024.176523.
[36]
Basem JI, Bah FN, Mehta ND. A brief review on the novel therapies for painful diabetic neuropathy[J]. Curr Pain Headache Rep, 2023, 27(9): 299-305. DOI: 10.1007/s41591-023-00001-7.
[37]
Staudt MD, Prabhala T, Sheldon BL, et al. Current strategies for the management of painful diabetic neuropathy[J]. J Diabetes Sci Technol, 2022, 16(2): 341-352. DOI: 10.1177/19322968221089789.
[38]
Jang HN, Oh TJ. Pharmacological and nonpharmacological treatments for painful diabetic peripheral neuropathy[J]. Diabetes Metab J, 2023, 47(6): 743-756. DOI: 10.4178/dmj.2023.00001.
[39]
Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases[J]. Drug Des Devel Ther, 2020, 14: 4735-4748. DOI: 10.2147/DDDT.S266548.
[40]
Chen Z, Feng H, Peng C, et al. Renoprotective effects of tanshinone IIA: a literature review[J]. Molecules, 2023, 28(4): 1990. DOI: 10.3390/molecules28040987.
[41]
Yu JL, Zhang ZY, Liu SP, et al. Relationship between metabolomics of T2DM patients and the anti-diabetic effects of phellodendri chinensis cortex-anemarrhenae rhizoma herb pair in mice[J]. J Ethnopharmacol, 2025, 339: 119129. DOI: 10.1016/j.jep.2025.119129.
[42]
Andonova M, Dzhelebov P, Trifonova K, et al. Metabolic markers associated with progression of type 2 diabetes induced by high-fat diet and single low dose streptozotocin in rats[J]. Vet Sci, 2023, 10(7): 431. DOI: 10.3390/vetsci10070123.
[1] 黄福丹, 吴春凤, 安牧尔, 陈光华, 赵璐. 丹参酮ⅡA对经子痫前期患者血清刺激的人脐静脉内皮细胞的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2012, 08(02): 146-149.
[2] 董军, 刘斌, 谭弟新, 庄宁, 陈童, 王锋. 丹参酮ⅡA磺酸钠注射液对胃肠外科手术切口愈合的影响研究[J/OL]. 中华普通外科学文献(电子版), 2016, 10(04): 283-286.
[3] 李玉娟, 艾芳, 熊欢庆, 陈键, 刘刚, 李志超, 金发光. "丹蛇"组方对小鼠急性肺损伤的治疗作用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 171-177.
[4] 靳宏举. 硫辛酸注射液联合二甲双胍缓释片对糖尿病周围神经病变的影响[J/OL]. 中华神经创伤外科电子杂志, 2015, 01(04): 200-203.
[5] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[6] 邬秋俊, 向茜. 甘油三酯-葡萄糖指数与2型糖尿病微血管并发症相关性的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(10): 1109-1112.
[7] 季华, 陈明卫. 活性氧自由基与肿瘤干细胞的相关研究进展[J/OL]. 中华临床医师杂志(电子版), 2017, 11(23): 2462-2465.
[8] 张志涛, 张蕾, 胡珂. 丹参酮ⅡA磺酸钠注射液联合艾司洛尔治疗不稳定型心绞痛的效果观察[J/OL]. 中华心脏与心律电子杂志, 2018, 06(03): 149-151.
[9] 帅宁安, 马悦, 强玉婷, 史晓岚, 佟莉, 董炜菁. 高压氧联合中医定向透药治疗老年糖尿病周围神经病变疗效分析[J/OL]. 中华老年病研究电子杂志, 2022, 09(03): 29-32.
[10] 邱佳敏, 蒋惠怡, 陶涛. 丹参酮ⅡA治疗急性缺血性脑卒中动物模型效果的Meta分析[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(02): 136-144.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?