[1] |
Jensen TS, Karlsson P, Gylfadottir SS, et al. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management[J]. Brain, 2021, 144(6): 1632-1645. DOI: 10.1093/brain/awab067.
|
[2] |
Hanewinckel R, van Oijen M, Ikram MA, et al. The epidemiology and risk factors of chronic polyneuropathy[J]. Eur J Epidemiol, 2016, 31(1): 5-20. DOI: 10.1007/s10654-015-0088-6.
|
[3] |
Davies M, Brophy S, Williams R, et al. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes[J]. Diabetes Care, 2006, 29(7): 1518-1522. DOI: 10.2337/dc06-0114.
|
[4] |
Ziegler D, Rathmann W, Dickhaus T, et al. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg surveys S2 and S3[J]. Pain Med, 2009, 10(2): 393-400. DOI: 10.1111/j.1526-4637.2008.00520.x.
|
[5] |
Gore M, Brandenburg NA, Dukes E, et al. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep[J]. J Pain Symptom Manage, 2005, 30(4): 374-385. DOI: 10.1016/j.jpainsymman.2005.06.005.
|
[6] |
Wei KS, Gu MZ, Zhu JW, et al. Current views of diabetic peripheral neuropathic pain comorbid depression-a review[J]. Eur Rev Med Pharmacol Sci, 2020, 24(20): 10663-10670. DOI: 10.26397/er.2020.10663.
|
[7] |
Ang L, Jaiswal M, Martin C, et al. Glucose control and diabetic neuropathy: lessons from recent large clinical trials[J]. Curr Diab Rep, 2014, 14(9): 528. DOI: 10.1007/s11906-014-0528-4.
|
[8] |
Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial[J]. Lancet, 2010, 376(9739): 419-430. DOI: 10.1016/S0140-6736(10)60787-4.
|
[9] |
Qureshi Z, Ali MN, Khalid M. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy[J]. J Diabetes Res, 2022, 2022: 9989272. DOI: 10.1155/2022/9989272.
|
[10] |
Vowles KE, McEntee ML, Julnes PS, et al. Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis[J]. Pain, 2015, 156(4): 569-576. DOI: 10.1097/j.pain.0000000000000140.
|
[11] |
Kazamel M, Stino AM, Smith AG. Metabolic syndrome and peripheral neuropathy[J]. Muscle Nerve, 2021, 63(3): 285-293. DOI: 10.1002/mus.27119.
|
[12] |
|
[13] |
Demir S, Nawroth PP, Herzog S, et al. Emerging targets in type 2 diabetes and diabetic complications[J]. Adv Sci (Weinh), 2021, 8(18): e2100275. DOI: 10.1002/advs.202100275.
|
[14] |
Liu XS, Fan B, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice[J]. Diabetes, 2017, 66(12): 3111-3121. DOI: 10.2337/db17-0320.
|
[15] |
Cheng Y, Chen Y, Li K, et al. How inflammation dictates diabetic peripheral neuropathy: an enlightening review[J]. CNS Neurosci Ther, 2024, 30(4): e14477. DOI: 10.1111/cns.14477.
|
[16] |
Baum P, Toyka KV, Blüher M, et al. Inflammatory mechanisms in the Pathophysiology of diabetic peripheral neuropathy (DN)-new aspects[J]. Int J Mol Sci, 2021, 22(19): 10835. DOI: 10.3390/ijms221910568.
|
[17] |
Yang GL, Jia LQ, Wu J, et al. Effect of tanshinone IIA on oxidative stress and apoptosis in a rat model of fatty liver[J]. Exp Ther Med, 2017, 14(5): 4639-4646. DOI: 10.3892/etm-0-0-4782.
|
[18] |
Liu Y, Wang L, Li X, et al. Tanshinone IIA improves impaired nerve functions in experimental diabetic rats[J]. Biochem Biophys Res Commun, 2010, 399(1): 49-54. DOI: 10.1016/j.bbrc.2010.09.012.
|
[19] |
Liao YJ, Chen JM, Long JY, et al. Tanshinone IIA alleviates CCL2-induced leaning memory and cognition impairment in rats: a potential therapeutic approach for HIV-associated neurocognitive disorder[J]. Biomed Res Int, 2020, 2020: 2702175. DOI: 10.1155/2020/2702175.
|
[20] |
Wan C, Liu XQ, Chen M, et al. Tanshinone IIA ameliorates Aβ transendothelial transportation through SIRT1-mediated endoplasmic reticulum stress[J]. J Transl Med, 2023, 21(1): 34. DOI: 10.1186/s12967-023-00034-9.
|
[21] |
Wu Q, Guan YB, Zhang KJ, et al. Tanshinone IIA mediates protection from diabetes kidney disease by inhibiting oxidative stress induced pyroptosis[J]. J Ethnopharmacol, 2023, 316: 116667. DOI: 10.1016/j.jep.2023.116667.
|
[22] |
Savelieff MG, Elafros MA, Viswanathan V, et al. The global and regional burden of diabetic peripheral neuropathy[J]. Nat Rev Neurol, 2025, 21(1): 17-31. DOI: 10.1038/s41581-025-00001-7.
|
[23] |
Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy [J]. Nat Rev Endocrinol, 2021, 17(7): 400-420. DOI: 10.1038/s41591-021-00001-7.
|
[24] |
Saedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843. DOI: 10.1016/j.diabres.2019.107843.
|
[25] |
Aronson R, Chu L, Joseph N, et al. Prevalence and risk evaluation of diabetic complications of the foot among adults with type 1 and type 2 diabetes in a large Canadian population (PEDAL Study)[J]. Can J Diabetes, 2021, 45(7): 588-593. DOI: 10.1016/j.canjd.2021.05.001.
|
[26] |
|
[27] |
Li W, Liang J, Li S, et al. Research progress of targeting NLRP3 inflammasome in peripheral nerve injury and pain[J]. Int Immunopharmacol, 2022, 110: 109026. DOI: 10.1016/j.intimp.2022.109026.
|
[28] |
Sharma A, Tate M, Mathew G, et al. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications[J]. Front Physiol, 2018, 9: 114. DOI: 10.3389/fphys.2018.00114.
|
[29] |
Zhang X, Huang S, Zhuang Z, et al. Lipin2 ameliorates diabetic encephalopathy via suppressing JNK/ERK-mediated NLRP3 inflammasome overactivation[J]. Int Immunopharmacol, 2023, 118: 109930. DOI: 10.1016/j.intimp.2023.109930.
|
[30] |
Xu L, Lin X, Guan M, et al. Verapamil attenuated prediabetic neuropathy in high-fat diet-fed mice through inhibiting TXNIP-mediated apoptosis and inflammation[J]. Oxid Med Cell Longev, 2019, 2019: 1896041. DOI: 10.1155/2019/1896041.
|
[31] |
|
[32] |
Cheng YC, Chu LW, Chen JY, et al. Loganin attenuates high glucose-induced schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation[J]. Cells, 2020, 9(9): 1948. DOI: 10.3390/cells9092123.
|
[33] |
Peng X, Chen L, Wang Z, et al. Tanshinone IIA regulates glycogen synthase kinase-3β-related signaling pathway and ameliorates memory impairment in APP/PS1 transgenic mice[J]. Eur J Pharmacol, 2022, 918: 174772. DOI: 10.1016/j.ejphar.2022.174772.
|
[34] |
Wu J, Chen J, Ge Y, et al. Neuroprotective effect of tanshinone IIA-modified mesenchymal stem cells in a lipopolysaccharide-induced neuroinflammation model[J]. Heliyon, 2024, 10(8): e29424. DOI: 10.1016/j.heliyon.2024.e29424.
|
[35] |
Zeng J, Gao WW, Yang H, et al. Sodium tanshinone IIA sulfonate suppresses microglia polarization and neuroinflammation possibly via regulating miR-125b-5p/STAT3 axis to ameliorate neuropathic pain[J]. Eur J Pharmacol, 2024, 972: 176523. DOI: 10.1016/j.ejphar.2024.176523.
|
[36] |
Basem JI, Bah FN, Mehta ND. A brief review on the novel therapies for painful diabetic neuropathy[J]. Curr Pain Headache Rep, 2023, 27(9): 299-305. DOI: 10.1007/s41591-023-00001-7.
|
[37] |
Staudt MD, Prabhala T, Sheldon BL, et al. Current strategies for the management of painful diabetic neuropathy[J]. J Diabetes Sci Technol, 2022, 16(2): 341-352. DOI: 10.1177/19322968221089789.
|
[38] |
Jang HN, Oh TJ. Pharmacological and nonpharmacological treatments for painful diabetic peripheral neuropathy[J]. Diabetes Metab J, 2023, 47(6): 743-756. DOI: 10.4178/dmj.2023.00001.
|
[39] |
Guo R, Li L, Su J, et al. Pharmacological activity and mechanism of tanshinone IIA in related diseases[J]. Drug Des Devel Ther, 2020, 14: 4735-4748. DOI: 10.2147/DDDT.S266548.
|
[40] |
Chen Z, Feng H, Peng C, et al. Renoprotective effects of tanshinone IIA: a literature review[J]. Molecules, 2023, 28(4): 1990. DOI: 10.3390/molecules28040987.
|
[41] |
Yu JL, Zhang ZY, Liu SP, et al. Relationship between metabolomics of T2DM patients and the anti-diabetic effects of phellodendri chinensis cortex-anemarrhenae rhizoma herb pair in mice[J]. J Ethnopharmacol, 2025, 339: 119129. DOI: 10.1016/j.jep.2025.119129.
|
[42] |
Andonova M, Dzhelebov P, Trifonova K, et al. Metabolic markers associated with progression of type 2 diabetes induced by high-fat diet and single low dose streptozotocin in rats[J]. Vet Sci, 2023, 10(7): 431. DOI: 10.3390/vetsci10070123.
|