| [1] |
Steiner TJ, Stovner LJ, Jensen R, et al. Migraine remains second among the world's causes of disability, and first among young women: findings from GBD2019[J]. J Headache Pain, 2020, 21(1): 137. DOI: 10.1186/s10194-020-01208-0.
|
| [2] |
Diener HC, Holle D, Solbach K, et al. Medication-overuse headache: Risk factors, pathophysiology and management[J]. Nat Rev Neurol, 2016, 12(10): 575-583. DOI: 10.1038/nrneurol.2016.124.
|
| [3] |
Robertson CE, Garza I. Critical analysis of the use of onabotulinumtoxinA (botulinum toxin type A) in migraine[J]. Neuropsychiatr Dis Treat, 2012, 8: 35-48. DOI: 10.2147/ndt.S17923.
|
| [4] |
Edvinsson JCA, Viganò A, Alekseeva A, et al. The fifth cranial nerve in headaches[J]. J Headache Pain, 2020, 21(1): 65. DOI: 10.1186/s10194-020-01134-1.
|
| [5] |
Noseda R, Melo-Carrillo A, Nir RR, et al. Non-trigeminal nociceptive innervation of the posterior dura: implications to occipital headache[J]. J Neurosci, 2019, 39(10): 1867-1880. DOI: 10.1523/jneurosci.2153-18.2018.
|
| [6] |
Levy D, Labastida-Ramirez A, MaassenVanDenBrink A. Current understanding of meningeal and cerebral vascular function underlying migraine headache[J]. Cephalalgia, 2019, 39(13): 1606-1622. DOI: 10.1177/0333102418771350.
|
| [7] |
Schueler M, Messlinger K, Dux M, et al. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache[J]. Pain, 2013, 154(9): 1622-1631. DOI: 10.1016/j.pain.2013.04.040.
|
| [8] |
Burstein R, Blake P, Schain A, et al. Extracranial origin of headache[J]. Curr Opin Neurol, 2017, 30(3): 263-271. DOI: 10.1097/wco.0000000000000437.
|
| [9] |
Busch V, Jakob W, Juergens T, et al. Functional connectivity between trigeminal and occipital nerves revealed by occipital nerve blockade and nociceptive blink reflexes[J]. Cephalalgia, 2006, 26(1): 50-55. DOI: 10.1111/j.1468-2982.2005.00992.x.
|
| [10] |
Terrier LM, Hadjikhani N, Destrieux C. The trigeminal pathways[J]. J Neurol, 2022, 269(7): 3443-3460. DOI: 10.1007/s00415-022-11002-4.
|
| [11] |
Kaag Rasmussen M, Møllgård K, Bork PAR, et al. Trigeminal ganglion neurons are directly activated by influx of CSF solutes in a migraine model[J]. Science, 2024, 385(6704): 80-86. DOI: 10.1126/science.adl0544.
|
| [12] |
Charles AC, Baca SM. Cortical spreading depression and migraine[J]. Nat Rev Neurol, 2013, 9(11): 637-644. DOI: 10.1038/nrneurol.2013.192.
|
| [13] |
Gafurov O, Koroleva K, Giniatullin R. Antidromic spike propagation and dissimilar expression of P2X, 5-HT, and TRPV1 channels in peripheral vs. Central sensory axons in meninges[J]. Front Cell Neurosci, 2020, 14: 623134. DOI: 10.3389/fncel.2020.623134.
|
| [14] |
Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, et al. Trafficking of thermo TRP channels[J]. Membranes (Basel), 2014, 4(3): 525-564. DOI: 10.3390/membranes4030525.
|
| [15] |
Ramachandran R. Neurogenic inflammation and its role in migraine[J]. Semin Immunopathol, 2018, 40(3): 301-314. DOI: 10.1007/s00281-018-0676-y.
|
| [16] |
Shimizu T, Shibata M, Toriumi H, et al. Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A[J]. Neurobiol Dis, 2012, 48(3): 367-378. DOI: 10.1016/j.nbd.2012.07.010.
|
| [17] |
Viana F. Chemosensory properties of the trigeminal system[J]. ACS Chem Neurosci, 2011, 2(1): 38-50. DOI: 10.1021/cn100102c.
|
| [18] |
Levy D, Burstein R, Kainz V, et al. Mast cell degranulation activates a pain pathway underlying migraine headache[J]. Pain, 2007, 130(1-2): 166-176. DOI: 10.1016/j.pain.2007.03.012.
|
| [19] |
|
| [20] |
Ashina M, Phul R, Khodaie M, et al. A monoclonal antibody to PACAP for migraine prevention[J]. N Engl J Med, 2024, 391(9): 800-809. DOI: 10.1056/NEJMoa2314577.
|
| [21] |
Søborg MK, Lund N, Snoer A, et al. PACAP-38 in cluster headache: a prospective, case-control study of a potential treatment target[J]. Eur J Neurol, 2025, 32(9): e70341. DOI: 10.1111/ene.70341.
|
| [22] |
Meng J, Ovsepian SV, Wang J, et al. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential[J]. J Neurosci, 2009, 29(15): 4981-4992. DOI: 10.1523/jneurosci.5490-08.2009.
|
| [23] |
Blumenfeld A, Silberstein SD, Dodick DW, et al. Method of injection of onabotulinumtoxinA for chronic migraine: a safe, well-tolerated, and effective treatment paradigm based on the preempt clinical program[J]. Headache, 2010, 50(9): 1406-1418. DOI: 10.1111/j.1526-4610.2010.01766.x.
|
| [24] |
Burstein R, Blumenfeld AM, Silberstein SD, et al. Mechanism of action of onabotulinumtoxinA in chronic migraine: a narrative review[J]. Headache, 2020, 60(7): 1259-1272. DOI: 10.1111/head.13849.
|
| [25] |
Hamark C, Berntsson RP, Masuyer G, et al. Glycans confer specificity to the recognition of ganglioside receptors by botulinum neurotoxin A[J]. J Am Chem Soc, 2017, 139(1): 218-230. DOI: 10.1021/jacs.6b09534.
|
| [26] |
Dong M, Yeh F, Tepp WH, et al. SV2 is the protein receptor for botulinum neurotoxin A[J]. Science, 2006, 312(5773): 592-596. DOI: 10.1126/science.1123654.
|
| [27] |
Jacky BP, Garay PE, Dupuy J, et al. Identification of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A)[J]. PLoS Pathog, 2013, 9(5): e1003369. DOI: 10.1371/journal.ppat.1003369.
|
| [28] |
Meng J, Wang J, Lawrence GW, et al. Molecular components required for resting and stimulated endocytosis of botulinum neurotoxins by glutamatergic and peptidergic neurons[J]. FASEB J, 2013, 27(8): 3167-3180. DOI: 10.1096/fj.13-228973.
|
| [29] |
Muraro L, Tosatto S, Motterlini L, et al. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane[J]. Biochem Biophys Res Commun, 2009, 380(1): 76-80. DOI: 10.1016/j.bbrc.2009.01.037.
|
| [30] |
Pirazzini M, Rossetto O, Eleopra R, et al. Botulinum neurotoxins: biology, pharmacology, and toxicology[J]. Pharmacol Rev, 2017, 69(2): 200-235. DOI: 10.1124/pr.116.012658.
|
| [31] |
Belinskaia M, Zurawski T, Kaza SK, et al. NGF enhances CGRP release evoked by capsaicin from rat trigeminal neurons: differential inhibition by SNAP-25-cleaving proteases[J]. Int J Mol Sci, 2022, 23(2): 892. DOI: 10.3390/ijms23020892.
|
| [32] |
Neale EA, Bowers LM, Jia M, et al. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal[J]. J Cell Biol, 1999, 147(6): 1249-1260. DOI: 10.1083/jcb.147.6.1249.
|
| [33] |
Melo-Carrillo A, Strassman AM, Schain AJ, et al. Exploring the effects of extracranial injections of botulinum toxin type A on prolonged intracranial meningeal nociceptors responses to cortical spreading depression in female rats[J]. Cephalalgia, 2019, 39(11): 1358-1365. DOI: 10.1177/0333102419873675.
|
| [34] |
Burstein R, Zhang X, Levy D, et al. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and other pains[J]. Cephalalgia, 2014, 34(11): 853-869. DOI: 10.1177/0333102414527648.
|
| [35] |
Gazerani P, Staahl C, Drewes AM, et al. The effects of botulinum toxin type A on capsaicin-evoked pain, flare, and secondary hyperalgesia in an experimental human model of trigeminal sensitization[J]. Pain, 2006, 122(3): 315-325. DOI: 10.1016/j.pain.2006.04.014.
|
| [36] |
Gazerani P, Pedersen NS, Staahl C, et al. Subcutaneous botulinum toxin type A reduces capsaicin-induced trigeminal pain and vasomotor reactions in human skin[J]. Pain, 2009, 141(1-2): 60-69. DOI: 10.1016/j.pain.2008.10.005.
|
| [37] |
Matak I, Bach-Rojecky L, Filipović B, et al. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A[J]. Neuroscience, 2011, 186: 201-207. DOI: 10.1016/j.neuroscience.2011.04.026.
|
| [38] |
Filipović B, Matak I, Bach-Rojecky L, et al. Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy[J]. PLoS One, 2012, 7(1): e29803. DOI: 10.1371/journal.pone.0029803.
|
| [39] |
Wu C, Xie N, Lian Y, et al. Central antinociceptive activity of peripherally applied botulinum toxin type A in lab rat model of trigeminal neuralgia[J]. Springerplus, 2016, 5: 431. DOI: 10.1186/s40064-016-2071-2.
|
| [40] |
Restani L, Novelli E, Bottari D, et al. Botulinum neurotoxin a impairs neurotransmission following retrograde transynaptic transport[J]. Traffic, 2012, 13(8): 1083-1089. DOI: 10.1111/j.1600-0854.2012.01369.x.
|
| [41] |
Lacković Z, Filipović B, Matak I, et al. Activity of botulinum toxin type A in cranial dura: implications for treatment of migraine and other headaches[J]. Br J Pharmacol, 2016, 173(2): 279-291. DOI: 10.1111/bph.13366.
|
| [42] |
Aurora SK, Dodick DW, Turkel CC, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial[J]. Cephalalgia, 2010, 30(7): 793-803. DOI: 10.1177/0333102410364676.
|
| [43] |
Diener HC, Dodick DW, Aurora SK, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial[J]. Cephalalgia, 2010, 30(7): 804-814. DOI: 10.1177/0333102410364677.
|
| [44] |
Aurora SK, Winner P, Freeman MC, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled analyses of the 56-week PREEMPT clinical program[J]. Headache, 2011, 51(9): 1358-1373. DOI: 10.1111/j.1526-4610.2011.01990.x.
|
| [45] |
Lipton RB, Varon SF, Grosberg B, et al. OnabotulinumtoxinA improves quality of life and reduces impact of chronic migraine[J]. Neurology, 2011, 77(15): 1465-1472. DOI: 10.1212/WNL.0b013e318232ab65.
|
| [46] |
Silberstein SD, Blumenfeld AM, Cady RK, et al. OnabotulinumtoxinA for treatment of chronic migraine: PREEMPT 24-week pooled subgroup analysis of patients who had acute headache medication overuse at baseline[J]. J Neurol Sci, 2013, 331(1-2): 48-56. DOI: 10.1016/j.jns.2013.05.003.
|
| [47] |
Chen TY, Garza I, Dodick DW, et al. The effect of onabotulinumtoxinA on aura frequency and severity in patients with hemiplegic migraine: case series of 11 patients[J]. Headache, 2018, 58(7): 973-985. DOI: 10.1111/head.13317.
|
| [48] |
Ahmed F, Gaul C, García-Moncó JC, et al. An open-label prospective study of the real-life use of onabotulinumtoxinA for the treatment of chronic migraine: the REPOSE study[J]. J Headache Pain, 2019, 20(1): 26. DOI: 10.1186/s10194-019-0976-1.
|
| [49] |
Guerzoni S, Pellesi L, Baraldi C, et al. Increased efficacy of regularly repeated cycles with onabotulinumtoxinA in MOH patients beyond the first year of treatment[J]. J Headache Pain, 2015, 17: 48. DOI: 10.1186/s10194-016-0634-9.
|
| [50] |
Vikelis M, Argyriou AA, Dermitzakis EV, et al. Onabotulinumtoxin-A treatment in Greek patients with chronic migraine[J]. J Headache Pain, 2016, 17(1): 84. DOI: 10.1186/s10194-016-0676-z.
|
| [51] |
Andreou AP, Trimboli M, Al-Kaisy A, et al. Prospective real-world analysis of onabotulinumtoxinA in chronic migraine post-national institute for health and care excellence UK technology appraisal[J]. Eur J Neurol, 2018, 25(8): 1069-e83. DOI: 10.1111/ene.13657.
|
| [52] |
Ornello R, Ahmed F, Negro A, et al. Is there a gender difference in the response to onabotulinumtoxinA in chronic migraine? Insights from a real-life European multicenter study on 2879 patients[J]. Pain Ther, 2021, 10(2): 1605-1618. DOI: 10.1007/s40122-021-00328-y.
|
| [53] |
Horvat DE, Shields JM, Young WWC, et al. Botulinum toxin for pediatric migraine: a retrospective multisite cohort study[J]. Pediatr Neurol, 2023, 147: 68-71. DOI: 10.1016/j.pediatrneurol.2023.07.005.
|
| [54] |
Diener HC, Dodick DW, Turkel CC, et al. Pooled analysis of the safety and tolerability of onabotulinumtoxinA in the treatment of chronic migraine[J]. Eur J Neurol, 2014, 21(6): 851-859. DOI: 10.1111/ene.12393.
|
| [55] |
Winner PK, Blumenfeld AM, Eross EJ, et al. Long-term safety and tolerability of onabotulinumtoxinA treatment in patients with chronic migraine: results of the compel study[J]. Drug Saf, 2019, 42(8): 1013-1024. DOI: 10.1007/s40264-019-00824-3.
|
| [56] |
Negro A, Curto M, Lionetto L, et al. A two years open-label prospective study of onabotulinumtoxinA 195 U in medication overuse headache: a real-world experience[J]. J Headache Pain, 2015, 171: 1. DOI: 10.1186/s10194-016-0591-3.
|
| [57] |
Stovner LJ, Hagen K, Tronvik E, et al. FollowTheSutures: piloting a new way to administer onabotulinumtoxinA for chronic migraine[J]. Cephalalgia, 2022, 42(7): 590-597. DOI: 10.1177/03331024211067775.
|
| [58] |
Kara M, Sekizkardeş M, Gürçay E, et al. Ultrasound-guided perisutural botulinum toxin injection for chronic migraine headache: initial report with technical description[J]. Am J Phys Med Rehabil, 2019, 98(8): e98-e100. DOI: 10.1097/phm.0000000000001120.
|
| [59] |
Gregoric E, Gregoric JA, Guarneri F, et al. Injections of clostridium botulinum neurotoxin A may cause thyroid complications in predisposed persons based on molecular mimicry with thyroid autoantigens[J]. Endocrine, 2011, 39(1): 41-47. DOI: 10.1007/s12020-010-9410-9.
|
| [60] |
Hepp Z, Rosen NL, Gillard PG, et al. Comparative effectiveness of onabotulinumtoxinA versus oral migraine prophylactic medications on headache-related resource utilization in the management of chronic migraine: retrospective analysis of a US-based insurance claims database[J]. Cephalalgia, 2016, 36(9): 862-874. DOI: 10.1177/0333102415621294.
|
| [61] |
Rothrock JF, Bloudek LM, Houle TT, et al. Real-world economic impact of onabotulinumtoxinA in patients with chronic migraine[J]. Headache, 2014, 54(10): 1565-1573. DOI: 10.1111/head.12456.
|
| [62] |
Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature[J]. Nat Neurosci, 2018, 21(10): 1380-1391. DOI: 10.1038/s41593-018-0227-9.
|
| [63] |
Mathew NT, Jaffri SF. A double-blind comparison of onabotulinumtoxina (BOTOX) and topiramate (TOPAMAX) for the prophylactic treatment of chronic migraine: a pilot study[J]. Headache, 2009, 49(10): 1466-1478. DOI: 10.1111/j.1526-4610.2009.01566.x.
|
| [64] |
Rothrock JF, Adams AM, Lipton RB, et al. FORWARD study: evaluating the comparative effectiveness of onabotulinumtoxinA and topiramate for headache prevention in adults with chronic migraine[J]. Headache, 2019, 59(10): 1700-1713. DOI: 10.1111/head.13653.
|
| [65] |
Blumenfeld AM, Patel AT, Turner IM, et al. Patient-reported outcomes from a 1-year, real-world, head-to-head comparison of onabotulinumtoxinA and topiramate for headache prevention in adults with chronic migraine[J]. J Prim Care Community Health, 2020, 11: 2150132720959936. DOI: 10.1177/2150132720959936.
|
| [66] |
Wang YF, Yang FC, Chen LA, et al. Comparative effectiveness and tolerability of calcitonin gene-related peptide (CGRP) monoclonal antibodies and onabotulinumtoxina in chronic migraine: a multicenter, real-world study in Taiwan[J]. Eur J Neurol, 2024, 31(9): e16372. DOI: 10.1111/ene.16372.
|
| [67] |
Grazzi L, Giossi R, Montisano DA, et al. Real-world effectiveness of Anti-CGRP monoclonal antibodies compared to OnabotulinumtoxinA (RAMO) in chronic migraine: a retrospective, observational, multicenter, cohort study[J]. J Headache Pain, 2024, 25(1): 14. DOI: 10.1186/s10194-024-01721-6.
|
| [68] |
Charleston Lt, Talon B, Sullivan C, et al. Persistence to anti-CGRP monoclonal antibodies and onabotulinumtoxinA among patients with migraine: a retrospective cohort study[J]. J Headache Pain, 2023, 24(1): 101. DOI: 10.1186/s10194-023-01636-8.
|
| [69] |
Kodounis M, Constantinidis TS, Rizonaki K, et al. A risk-difference meta-analysis for the prophylactic treatments of chronic migraine[J]. Cureus, 2024, 16(6): e62458. DOI: 10.7759/cureus.62458.
|
| [70] |
Pijpers JA, Kies DA, Louter MA, et al. Acute withdrawal and botulinum toxin A in chronic migraine with medication overuse: a double-blind randomized controlled trial[J]. Brain, 2019, 142(5): 1203-1214. DOI: 10.1093/brain/awz052.
|
| [71] |
Domínguez C, Pozo-Rosich P, Torres-Ferrús M, et al. OnabotulinumtoxinA in chronic migraine: predictors of response. A prospective multicentre descriptive study[J]. Eur J Neurol, 2018, 25(2): 411-416. DOI: 10.1111/ene.13523.
|
| [72] |
De Matteis E, Guglielmetti M, Ornello R, et al. Targeting CGRP for migraine treatment: mechanisms, antibodies, small molecules, perspectives[J]. Expert Rev Neurother, 2020, 20(6): 627-641. DOI: 10.1080/14737175.2020.1772758.
|
| [73] |
de Tommaso M, Brighina F, Delussi M. Effects of botulinum toxin A on allodynia in chronic migraine: an observational open-label two-year study[J]. Eur Neurol, 2019, 81(1-2): 37-46. DOI: 10.1159/000499764.
|
| [74] |
Ornello R, Ahmed F, Negro A, et al. Early management of onabotulinumtoxinA treatment in chronic migraine: insights from a real-life European multicenter study[J]. Pain Ther, 2021, 10(1): 637-650. DOI: 10.1007/s40122-021-00253-0.
|
| [75] |
Quintas S, García-Azorín D, Heredia P, et al. Wearing off response to onabotulinumtoxinA in chronic migraine: analysis in a series of 193 patients[J]. Pain Med, 2019, 20(9): 1815-1821. DOI: 10.1093/pm/pny282.
|
| [76] |
Masters-Israilov A, Robbins MS. OnabotulinumtoxinA wear-off phenomenon in the treatment of chronic migraine[J]. Headache, 2019, 59(10): 1753-1761. DOI: 10.1111/head.13638.
|
| [77] |
Ruscheweyh R, Athwal B, Gryglas-Dworak A, et al. Wear-off of onabotulinumtoxinA effect over the treatment interval in chronic migraine: a retrospective chart review with analysis of headache diaries[J]. Headache, 2020, 60(8): 1673-1682. DOI: 10.1111/head.13925.
|
| [78] |
Ondo WG, Simmons JH, Shahid MH, et al. Onabotulinum toxin-A injections for sleep bruxism: a double-blind, placebo-controlled study[J]. Neurology, 2018, 90(7): e559-e564. DOI: 10.1212/wnl.0000000000004951.
|
| [79] |
Altamura C, Ornello R, Ahmed F, et al. OnabotulinumtoxinA in elderly patients with chronic migraine: insights from a real-life European multicenter study[J]. J Neurol, 2023, 270(2): 986-994. DOI: 10.1007/s00415-022-11457-5.
|
| [80] |
Salim A, Hennessy E, Sonneborn C, et al. Synergism of anti-CGRP monoclonal antibodies and onabotulinumtoxinA in the treatment of chronic migraine: a real-world retrospective chart review[J]. CNS Drugs, 2024, 38(6): 481-491. DOI: 10.1007/s40263-024-01086-z.
|