切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (06) : 370 -376. doi: 10.3877/cma.j.issn.2095-123X.2025.06.008

综述

A型肉毒毒素治疗慢性偏头痛的研究进展
王雪1, 蒋晨阳1, 李杏2,()   
  1. 1450052 郑州,郑州大学第一附属医院神经内科
    2102499 北京市房山区第一医院神经内科
  • 收稿日期:2024-12-18 出版日期:2025-12-15
  • 通信作者: 李杏

Recent progress in the type a botulinum toxin for the treatment of chronic migraine

Xue Wang1, Chenyang Jiang1, Xing Li2,()   

  1. 1Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
    2Department of Neurology, The First Hospital of Fangshan District, Beijing 102499, China
  • Received:2024-12-18 Published:2025-12-15
  • Corresponding author: Xing Li
引用本文:

王雪, 蒋晨阳, 李杏. A型肉毒毒素治疗慢性偏头痛的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(06): 370-376.

Xue Wang, Chenyang Jiang, Xing Li. Recent progress in the type a botulinum toxin for the treatment of chronic migraine[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(06): 370-376.

A型肉毒毒素(BT-A)是第一个被批准且现仍用于慢性偏头痛(CM)预防治疗的药物,主要作用于三叉神经和颈神经末梢,通过抑制降钙素基因相关肽、乙酰胆碱、P物质等炎症介质的释放来减少嗜离子性和代谢性受体在神经元膜的结合,从而增加了三叉神经和颈神经纤维的去极化阈值,抑制其激活。在临床上,BT-A对CM的疗效进行了大型随机安慰剂对照试验评估,并在多项长期观察性研究中得到验证。本文系统综述了使用BT-A治疗CM的证据,总结其作用机制、作用方式及其在预防治疗中的安全性和有效性,讨论BT-A对疼痛的治疗作用,以更全面地了解BT-A在CM治疗中的新进展。

Botulinum toxin type A (BT-A) is the first medication approved for the preventive treatment of chronic migraine (CM) and remains one of the few drugs available for this purpose. BT-A primarily acts on the nerve endings of the trigeminal and cervical nerves by inhibiting the release of inflammatory mediators such as calcitonin gene-related peptide, acetylcholine, and substance P. This reduces the binding of ionotropic and metabotropic receptors on neuronal membranes, thereby increasing the depolarization threshold of trigeminal and cervical nerve fibers and reducing their activation. However, certain aspects of its mechanism of action remain controversial. Clinically, the efficacy of BT-A in CM has been evaluated through large randomized placebo-controlled trials, such as the Phase 3 studies of the Phase Ⅲ Research Evaluating Migraine Prophylaxis Therapy (PREEMPT) trial. These findings have also been validated in multiple long-term observational studies. This review summarizes the evidence for using BT-A in the treatment of CM, outlines its mechanism of action, mode of action, and its safety and efficacy in preventive therapy, and discusses the current role of BT-A in pain management to provide a comprehensive understanding of the advancements in BT-A for chronic migraine treatment.

[1]
Steiner TJ, Stovner LJ, Jensen R, et al. Migraine remains second among the world's causes of disability, and first among young women: findings from GBD2019[J]. J Headache Pain, 2020, 21(1): 137. DOI: 10.1186/s10194-020-01208-0.
[2]
Diener HC, Holle D, Solbach K, et al. Medication-overuse headache: Risk factors, pathophysiology and management[J]. Nat Rev Neurol, 2016, 12(10): 575-583. DOI: 10.1038/nrneurol.2016.124.
[3]
Robertson CE, Garza I. Critical analysis of the use of onabotulinumtoxinA (botulinum toxin type A) in migraine[J]. Neuropsychiatr Dis Treat, 2012, 8: 35-48. DOI: 10.2147/ndt.S17923.
[4]
Edvinsson JCA, Viganò A, Alekseeva A, et al. The fifth cranial nerve in headaches[J]. J Headache Pain, 2020, 21(1): 65. DOI: 10.1186/s10194-020-01134-1.
[5]
Noseda R, Melo-Carrillo A, Nir RR, et al. Non-trigeminal nociceptive innervation of the posterior dura: implications to occipital headache[J]. J Neurosci, 2019, 39(10): 1867-1880. DOI: 10.1523/jneurosci.2153-18.2018.
[6]
Levy D, Labastida-Ramirez A, MaassenVanDenBrink A. Current understanding of meningeal and cerebral vascular function underlying migraine headache[J]. Cephalalgia, 2019, 39(13): 1606-1622. DOI: 10.1177/0333102418771350.
[7]
Schueler M, Messlinger K, Dux M, et al. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache[J]. Pain, 2013, 154(9): 1622-1631. DOI: 10.1016/j.pain.2013.04.040.
[8]
Burstein R, Blake P, Schain A, et al. Extracranial origin of headache[J]. Curr Opin Neurol, 2017, 30(3): 263-271. DOI: 10.1097/wco.0000000000000437.
[9]
Busch V, Jakob W, Juergens T, et al. Functional connectivity between trigeminal and occipital nerves revealed by occipital nerve blockade and nociceptive blink reflexes[J]. Cephalalgia, 2006, 26(1): 50-55. DOI: 10.1111/j.1468-2982.2005.00992.x.
[10]
Terrier LM, Hadjikhani N, Destrieux C. The trigeminal pathways[J]. J Neurol, 2022, 269(7): 3443-3460. DOI: 10.1007/s00415-022-11002-4.
[11]
Kaag Rasmussen M, Møllgård K, Bork PAR, et al. Trigeminal ganglion neurons are directly activated by influx of CSF solutes in a migraine model[J]. Science, 2024, 385(6704): 80-86. DOI: 10.1126/science.adl0544.
[12]
Charles AC, Baca SM. Cortical spreading depression and migraine[J]. Nat Rev Neurol, 2013, 9(11): 637-644. DOI: 10.1038/nrneurol.2013.192.
[13]
Gafurov O, Koroleva K, Giniatullin R. Antidromic spike propagation and dissimilar expression of P2X, 5-HT, and TRPV1 channels in peripheral vs. Central sensory axons in meninges[J]. Front Cell Neurosci, 2020, 14: 623134. DOI: 10.3389/fncel.2020.623134.
[14]
Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, et al. Trafficking of thermo TRP channels[J]. Membranes (Basel), 2014, 4(3): 525-564. DOI: 10.3390/membranes4030525.
[15]
Ramachandran R. Neurogenic inflammation and its role in migraine[J]. Semin Immunopathol, 2018, 40(3): 301-314. DOI: 10.1007/s00281-018-0676-y.
[16]
Shimizu T, Shibata M, Toriumi H, et al. Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A[J]. Neurobiol Dis, 2012, 48(3): 367-378. DOI: 10.1016/j.nbd.2012.07.010.
[17]
Viana F. Chemosensory properties of the trigeminal system[J]. ACS Chem Neurosci, 2011, 2(1): 38-50. DOI: 10.1021/cn100102c.
[18]
Levy D, Burstein R, Kainz V, et al. Mast cell degranulation activates a pain pathway underlying migraine headache[J]. Pain, 2007, 130(1-2): 166-176. DOI: 10.1016/j.pain.2007.03.012.
[19]
Diener HC. PACAP and migraine[J]. Brain, 2025, 148(8): 2646-2649. DOI: 10.1093/brain/awaf131.
[20]
Ashina M, Phul R, Khodaie M, et al. A monoclonal antibody to PACAP for migraine prevention[J]. N Engl J Med, 2024, 391(9): 800-809. DOI: 10.1056/NEJMoa2314577.
[21]
Søborg MK, Lund N, Snoer A, et al. PACAP-38 in cluster headache: a prospective, case-control study of a potential treatment target[J]. Eur J Neurol, 2025, 32(9): e70341. DOI: 10.1111/ene.70341.
[22]
Meng J, Ovsepian SV, Wang J, et al. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential[J]. J Neurosci, 2009, 29(15): 4981-4992. DOI: 10.1523/jneurosci.5490-08.2009.
[23]
Blumenfeld A, Silberstein SD, Dodick DW, et al. Method of injection of onabotulinumtoxinA for chronic migraine: a safe, well-tolerated, and effective treatment paradigm based on the preempt clinical program[J]. Headache, 2010, 50(9): 1406-1418. DOI: 10.1111/j.1526-4610.2010.01766.x.
[24]
Burstein R, Blumenfeld AM, Silberstein SD, et al. Mechanism of action of onabotulinumtoxinA in chronic migraine: a narrative review[J]. Headache, 2020, 60(7): 1259-1272. DOI: 10.1111/head.13849.
[25]
Hamark C, Berntsson RP, Masuyer G, et al. Glycans confer specificity to the recognition of ganglioside receptors by botulinum neurotoxin A[J]. J Am Chem Soc, 2017, 139(1): 218-230. DOI: 10.1021/jacs.6b09534.
[26]
Dong M, Yeh F, Tepp WH, et al. SV2 is the protein receptor for botulinum neurotoxin A[J]. Science, 2006, 312(5773): 592-596. DOI: 10.1126/science.1123654.
[27]
Jacky BP, Garay PE, Dupuy J, et al. Identification of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A)[J]. PLoS Pathog, 2013, 9(5): e1003369. DOI: 10.1371/journal.ppat.1003369.
[28]
Meng J, Wang J, Lawrence GW, et al. Molecular components required for resting and stimulated endocytosis of botulinum neurotoxins by glutamatergic and peptidergic neurons[J]. FASEB J, 2013, 27(8): 3167-3180. DOI: 10.1096/fj.13-228973.
[29]
Muraro L, Tosatto S, Motterlini L, et al. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane[J]. Biochem Biophys Res Commun, 2009, 380(1): 76-80. DOI: 10.1016/j.bbrc.2009.01.037.
[30]
Pirazzini M, Rossetto O, Eleopra R, et al. Botulinum neurotoxins: biology, pharmacology, and toxicology[J]. Pharmacol Rev, 2017, 69(2): 200-235. DOI: 10.1124/pr.116.012658.
[31]
Belinskaia M, Zurawski T, Kaza SK, et al. NGF enhances CGRP release evoked by capsaicin from rat trigeminal neurons: differential inhibition by SNAP-25-cleaving proteases[J]. Int J Mol Sci, 2022, 23(2): 892. DOI: 10.3390/ijms23020892.
[32]
Neale EA, Bowers LM, Jia M, et al. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal[J]. J Cell Biol, 1999, 147(6): 1249-1260. DOI: 10.1083/jcb.147.6.1249.
[33]
Melo-Carrillo A, Strassman AM, Schain AJ, et al. Exploring the effects of extracranial injections of botulinum toxin type A on prolonged intracranial meningeal nociceptors responses to cortical spreading depression in female rats[J]. Cephalalgia, 2019, 39(11): 1358-1365. DOI: 10.1177/0333102419873675.
[34]
Burstein R, Zhang X, Levy D, et al. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and other pains[J]. Cephalalgia, 2014, 34(11): 853-869. DOI: 10.1177/0333102414527648.
[35]
Gazerani P, Staahl C, Drewes AM, et al. The effects of botulinum toxin type A on capsaicin-evoked pain, flare, and secondary hyperalgesia in an experimental human model of trigeminal sensitization[J]. Pain, 2006, 122(3): 315-325. DOI: 10.1016/j.pain.2006.04.014.
[36]
Gazerani P, Pedersen NS, Staahl C, et al. Subcutaneous botulinum toxin type A reduces capsaicin-induced trigeminal pain and vasomotor reactions in human skin[J]. Pain, 2009, 141(1-2): 60-69. DOI: 10.1016/j.pain.2008.10.005.
[37]
Matak I, Bach-Rojecky L, Filipović B, et al. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A[J]. Neuroscience, 2011, 186: 201-207. DOI: 10.1016/j.neuroscience.2011.04.026.
[38]
Filipović B, Matak I, Bach-Rojecky L, et al. Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy[J]. PLoS One, 2012, 7(1): e29803. DOI: 10.1371/journal.pone.0029803.
[39]
Wu C, Xie N, Lian Y, et al. Central antinociceptive activity of peripherally applied botulinum toxin type A in lab rat model of trigeminal neuralgia[J]. Springerplus, 2016, 5: 431. DOI: 10.1186/s40064-016-2071-2.
[40]
Restani L, Novelli E, Bottari D, et al. Botulinum neurotoxin a impairs neurotransmission following retrograde transynaptic transport[J]. Traffic, 2012, 13(8): 1083-1089. DOI: 10.1111/j.1600-0854.2012.01369.x.
[41]
Lacković Z, Filipović B, Matak I, et al. Activity of botulinum toxin type A in cranial dura: implications for treatment of migraine and other headaches[J]. Br J Pharmacol, 2016, 173(2): 279-291. DOI: 10.1111/bph.13366.
[42]
Aurora SK, Dodick DW, Turkel CC, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial[J]. Cephalalgia, 2010, 30(7): 793-803. DOI: 10.1177/0333102410364676.
[43]
Diener HC, Dodick DW, Aurora SK, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial[J]. Cephalalgia, 2010, 30(7): 804-814. DOI: 10.1177/0333102410364677.
[44]
Aurora SK, Winner P, Freeman MC, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled analyses of the 56-week PREEMPT clinical program[J]. Headache, 2011, 51(9): 1358-1373. DOI: 10.1111/j.1526-4610.2011.01990.x.
[45]
Lipton RB, Varon SF, Grosberg B, et al. OnabotulinumtoxinA improves quality of life and reduces impact of chronic migraine[J]. Neurology, 2011, 77(15): 1465-1472. DOI: 10.1212/WNL.0b013e318232ab65.
[46]
Silberstein SD, Blumenfeld AM, Cady RK, et al. OnabotulinumtoxinA for treatment of chronic migraine: PREEMPT 24-week pooled subgroup analysis of patients who had acute headache medication overuse at baseline[J]. J Neurol Sci, 2013, 331(1-2): 48-56. DOI: 10.1016/j.jns.2013.05.003.
[47]
Chen TY, Garza I, Dodick DW, et al. The effect of onabotulinumtoxinA on aura frequency and severity in patients with hemiplegic migraine: case series of 11 patients[J]. Headache, 2018, 58(7): 973-985. DOI: 10.1111/head.13317.
[48]
Ahmed F, Gaul C, García-Moncó JC, et al. An open-label prospective study of the real-life use of onabotulinumtoxinA for the treatment of chronic migraine: the REPOSE study[J]. J Headache Pain, 2019, 20(1): 26. DOI: 10.1186/s10194-019-0976-1.
[49]
Guerzoni S, Pellesi L, Baraldi C, et al. Increased efficacy of regularly repeated cycles with onabotulinumtoxinA in MOH patients beyond the first year of treatment[J]. J Headache Pain, 2015, 17: 48. DOI: 10.1186/s10194-016-0634-9.
[50]
Vikelis M, Argyriou AA, Dermitzakis EV, et al. Onabotulinumtoxin-A treatment in Greek patients with chronic migraine[J]. J Headache Pain, 2016, 17(1): 84. DOI: 10.1186/s10194-016-0676-z.
[51]
Andreou AP, Trimboli M, Al-Kaisy A, et al. Prospective real-world analysis of onabotulinumtoxinA in chronic migraine post-national institute for health and care excellence UK technology appraisal[J]. Eur J Neurol, 2018, 25(8): 1069-e83. DOI: 10.1111/ene.13657.
[52]
Ornello R, Ahmed F, Negro A, et al. Is there a gender difference in the response to onabotulinumtoxinA in chronic migraine? Insights from a real-life European multicenter study on 2879 patients[J]. Pain Ther, 2021, 10(2): 1605-1618. DOI: 10.1007/s40122-021-00328-y.
[53]
Horvat DE, Shields JM, Young WWC, et al. Botulinum toxin for pediatric migraine: a retrospective multisite cohort study[J]. Pediatr Neurol, 2023, 147: 68-71. DOI: 10.1016/j.pediatrneurol.2023.07.005.
[54]
Diener HC, Dodick DW, Turkel CC, et al. Pooled analysis of the safety and tolerability of onabotulinumtoxinA in the treatment of chronic migraine[J]. Eur J Neurol, 2014, 21(6): 851-859. DOI: 10.1111/ene.12393.
[55]
Winner PK, Blumenfeld AM, Eross EJ, et al. Long-term safety and tolerability of onabotulinumtoxinA treatment in patients with chronic migraine: results of the compel study[J]. Drug Saf, 2019, 42(8): 1013-1024. DOI: 10.1007/s40264-019-00824-3.
[56]
Negro A, Curto M, Lionetto L, et al. A two years open-label prospective study of onabotulinumtoxinA 195 U in medication overuse headache: a real-world experience[J]. J Headache Pain, 2015, 171: 1. DOI: 10.1186/s10194-016-0591-3.
[57]
Stovner LJ, Hagen K, Tronvik E, et al. FollowTheSutures: piloting a new way to administer onabotulinumtoxinA for chronic migraine[J]. Cephalalgia, 2022, 42(7): 590-597. DOI: 10.1177/03331024211067775.
[58]
Kara M, Sekizkardeş M, Gürçay E, et al. Ultrasound-guided perisutural botulinum toxin injection for chronic migraine headache: initial report with technical description[J]. Am J Phys Med Rehabil, 2019, 98(8): e98-e100. DOI: 10.1097/phm.0000000000001120.
[59]
Gregoric E, Gregoric JA, Guarneri F, et al. Injections of clostridium botulinum neurotoxin A may cause thyroid complications in predisposed persons based on molecular mimicry with thyroid autoantigens[J]. Endocrine, 2011, 39(1): 41-47. DOI: 10.1007/s12020-010-9410-9.
[60]
Hepp Z, Rosen NL, Gillard PG, et al. Comparative effectiveness of onabotulinumtoxinA versus oral migraine prophylactic medications on headache-related resource utilization in the management of chronic migraine: retrospective analysis of a US-based insurance claims database[J]. Cephalalgia, 2016, 36(9): 862-874. DOI: 10.1177/0333102415621294.
[61]
Rothrock JF, Bloudek LM, Houle TT, et al. Real-world economic impact of onabotulinumtoxinA in patients with chronic migraine[J]. Headache, 2014, 54(10): 1565-1573. DOI: 10.1111/head.12456.
[62]
Louveau A, Herz J, Alme MN, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature[J]. Nat Neurosci, 2018, 21(10): 1380-1391. DOI: 10.1038/s41593-018-0227-9.
[63]
Mathew NT, Jaffri SF. A double-blind comparison of onabotulinumtoxina (BOTOX) and topiramate (TOPAMAX) for the prophylactic treatment of chronic migraine: a pilot study[J]. Headache, 2009, 49(10): 1466-1478. DOI: 10.1111/j.1526-4610.2009.01566.x.
[64]
Rothrock JF, Adams AM, Lipton RB, et al. FORWARD study: evaluating the comparative effectiveness of onabotulinumtoxinA and topiramate for headache prevention in adults with chronic migraine[J]. Headache, 2019, 59(10): 1700-1713. DOI: 10.1111/head.13653.
[65]
Blumenfeld AM, Patel AT, Turner IM, et al. Patient-reported outcomes from a 1-year, real-world, head-to-head comparison of onabotulinumtoxinA and topiramate for headache prevention in adults with chronic migraine[J]. J Prim Care Community Health, 2020, 11: 2150132720959936. DOI: 10.1177/2150132720959936.
[66]
Wang YF, Yang FC, Chen LA, et al. Comparative effectiveness and tolerability of calcitonin gene-related peptide (CGRP) monoclonal antibodies and onabotulinumtoxina in chronic migraine: a multicenter, real-world study in Taiwan[J]. Eur J Neurol, 2024, 31(9): e16372. DOI: 10.1111/ene.16372.
[67]
Grazzi L, Giossi R, Montisano DA, et al. Real-world effectiveness of Anti-CGRP monoclonal antibodies compared to OnabotulinumtoxinA (RAMO) in chronic migraine: a retrospective, observational, multicenter, cohort study[J]. J Headache Pain, 2024, 25(1): 14. DOI: 10.1186/s10194-024-01721-6.
[68]
Charleston Lt, Talon B, Sullivan C, et al. Persistence to anti-CGRP monoclonal antibodies and onabotulinumtoxinA among patients with migraine: a retrospective cohort study[J]. J Headache Pain, 2023, 24(1): 101. DOI: 10.1186/s10194-023-01636-8.
[69]
Kodounis M, Constantinidis TS, Rizonaki K, et al. A risk-difference meta-analysis for the prophylactic treatments of chronic migraine[J]. Cureus, 2024, 16(6): e62458. DOI: 10.7759/cureus.62458.
[70]
Pijpers JA, Kies DA, Louter MA, et al. Acute withdrawal and botulinum toxin A in chronic migraine with medication overuse: a double-blind randomized controlled trial[J]. Brain, 2019, 142(5): 1203-1214. DOI: 10.1093/brain/awz052.
[71]
Domínguez C, Pozo-Rosich P, Torres-Ferrús M, et al. OnabotulinumtoxinA in chronic migraine: predictors of response. A prospective multicentre descriptive study[J]. Eur J Neurol, 2018, 25(2): 411-416. DOI: 10.1111/ene.13523.
[72]
De Matteis E, Guglielmetti M, Ornello R, et al. Targeting CGRP for migraine treatment: mechanisms, antibodies, small molecules, perspectives[J]. Expert Rev Neurother, 2020, 20(6): 627-641. DOI: 10.1080/14737175.2020.1772758.
[73]
de Tommaso M, Brighina F, Delussi M. Effects of botulinum toxin A on allodynia in chronic migraine: an observational open-label two-year study[J]. Eur Neurol, 2019, 81(1-2): 37-46. DOI: 10.1159/000499764.
[74]
Ornello R, Ahmed F, Negro A, et al. Early management of onabotulinumtoxinA treatment in chronic migraine: insights from a real-life European multicenter study[J]. Pain Ther, 2021, 10(1): 637-650. DOI: 10.1007/s40122-021-00253-0.
[75]
Quintas S, García-Azorín D, Heredia P, et al. Wearing off response to onabotulinumtoxinA in chronic migraine: analysis in a series of 193 patients[J]. Pain Med, 2019, 20(9): 1815-1821. DOI: 10.1093/pm/pny282.
[76]
Masters-Israilov A, Robbins MS. OnabotulinumtoxinA wear-off phenomenon in the treatment of chronic migraine[J]. Headache, 2019, 59(10): 1753-1761. DOI: 10.1111/head.13638.
[77]
Ruscheweyh R, Athwal B, Gryglas-Dworak A, et al. Wear-off of onabotulinumtoxinA effect over the treatment interval in chronic migraine: a retrospective chart review with analysis of headache diaries[J]. Headache, 2020, 60(8): 1673-1682. DOI: 10.1111/head.13925.
[78]
Ondo WG, Simmons JH, Shahid MH, et al. Onabotulinum toxin-A injections for sleep bruxism: a double-blind, placebo-controlled study[J]. Neurology, 2018, 90(7): e559-e564. DOI: 10.1212/wnl.0000000000004951.
[79]
Altamura C, Ornello R, Ahmed F, et al. OnabotulinumtoxinA in elderly patients with chronic migraine: insights from a real-life European multicenter study[J]. J Neurol, 2023, 270(2): 986-994. DOI: 10.1007/s00415-022-11457-5.
[80]
Salim A, Hennessy E, Sonneborn C, et al. Synergism of anti-CGRP monoclonal antibodies and onabotulinumtoxinA in the treatment of chronic migraine: a real-world retrospective chart review[J]. CNS Drugs, 2024, 38(6): 481-491. DOI: 10.1007/s40263-024-01086-z.
[1] 徐海燕, 李辉, 徐冬冬, 姜茹欣, 陈有信. 超声监测下注射A型肉毒毒素对甲状腺相关眼病限制性斜视的疗效观察[J/OL]. 中华医学超声杂志(电子版), 2018, 15(11): 864-868.
[2] 姜烨容, 霍然. A型肉毒毒素的临床研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2017, 12(04): 298-302.
[3] 卢杨, 张真真, 张霞, 张雪迪, 王纯, 杨智杰, 白晓峰. A型肉毒毒素复合罗哌卡因治疗三叉神经痛的疗效[J/OL]. 中华口腔医学研究杂志(电子版), 2020, 14(01): 24-28.
[4] 汤福鑫, 马宁, 周太成, 陈双. A型肉毒毒素在复杂腹壁缺损治疗中的应用[J/OL]. 中华普通外科学文献(电子版), 2019, 13(04): 324-326.
[5] 苏寒, 付晶, 吴晓, 孙阿莉, 赵博文, 洪洁. A型肉毒毒素注射与手术治疗儿童共同性斜视的临床比较[J/OL]. 中华眼科医学杂志(电子版), 2020, 10(02): 83-89.
[6] 李婷, 银丽. 眼周轮匝肌联合皱眉肌、降眉肌及额肌注射A型肉毒毒素治疗良性特发性眼睑痉挛的疗效观察[J/OL]. 中华眼科医学杂志(电子版), 2017, 07(04): 165-170.
[7] 陈雷, 李丹丹. 超声引导下A型肉毒毒素注射治疗腰背肌筋膜疼痛综合征的疗效观察[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(02): 117-122.
[8] 王思达, 周松, 谢春成. 慢性偏头痛的外科治疗体会[J/OL]. 中华脑科疾病与康复杂志(电子版), 2021, 11(01): 38-40.
[9] 王嗣嵩, 任骥, 熊建平, 郑宏伟, 陈昌平, 孙华东, 陈永军, 张桓, 冯文, 潘海鹏. 肉毒杆菌毒素A型治疗慢性偏头痛的疗效分析(附47例报道)[J/OL]. 中华脑科疾病与康复杂志(电子版), 2021, 11(01): 9-13.
[10] 赵海娜, 马灿灿, 陈兰兰, 蒋瓅. 眼睑痉挛患者的脑电相位-振幅耦合特征及A型肉毒毒素治疗的影响[J/OL]. 中华临床医师杂志(电子版), 2025, 19(10): 779-785.
[11] 姜宇丰, 张睿, 闵红巍. 全关节置换术后异位骨化的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 526-531.
[12] 樊子君, 王怡婷, 胡端敏, 任怡琳, 盛颖玥, 刘天浩, 吴铁龙, 戴圆圆, 薛育政. 内镜下胃壁注射A型肉毒毒素减重的研究现状[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 467-470.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?