切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (01) : 57 -61. doi: 10.3877/cma.j.issn.2095-123X.2023.01.007

综述

Toll样受体2与缺血性脑卒中关系的研究进展
高海杰1, 王宝军2,()   
  1. 1. 010107 呼和浩特,内蒙古医科大学包头临床医学院
    2. 014040 包头市中心医院神经内科
  • 收稿日期:2022-04-08 出版日期:2023-02-15
  • 通信作者: 王宝军

Research progress on the relationship between Toll-like receptor 2 and ischemic stroke

Haijie Gao1, Baojun Wang2,()   

  1. 1. Baotou Clinical Medical College, Inner Mongolia Medical University, Hohhot 010107, China
    2. Department of Neurology, Baotou Central Hospital, Baotou 014040, China
  • Received:2022-04-08 Published:2023-02-15
  • Corresponding author: Baojun Wang
引用本文:

高海杰, 王宝军. Toll样受体2与缺血性脑卒中关系的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 57-61.

Haijie Gao, Baojun Wang. Research progress on the relationship between Toll-like receptor 2 and ischemic stroke[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(01): 57-61.

缺血性脑卒中的病理生理机制比较复杂,Toll样受体2(TLR2)介导的炎症反应在此过程中发挥着重要作用,本文围绕TLR2的生物学功能、介导的信号通路以及TLR2与缺血性脑卒中的关系展开综述。

The pathophysiological mechanism of ischemic stroke is complex, and studies have shown that toll-like receptor 2 (TLR2)-mediated inflammatory response plays an important role in this process. By reviewing relevant literature, the biological function of TLR2 and its mediated signaling pathway as well as the research progress of the relationship between TLR2 and ischemic stroke were reviewed.

[1]
Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults[J]. Circulation, 2017, 135(8): 759-771. DOI: 10.1161/CIRCULATIONAHA.116.025250.
[2]
都一鸣,陈鑫,赵世光.急性缺血性脑卒中氧化应激机制的研究进展[J].中华神经创伤外科电子杂志, 2021, 7(2): 121-124. DOI: 10.3877/cma.j.issn.2095-9141.2021.02.013.
[3]
Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory disequili-brium in stroke[J]. Circ Res. 2016, 119(1): 142-158. DOI: 10.1161/CIRCRESAHA.116.308022.
[4]
Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins[J]. Microbiol Spectr, 2016, 4(6): 4.6.41. DOI: 10.1128/microbiolspec.MCHD-0040-2016.
[5]
Lim KH, Staudt LM. Toll-like receptor signaling[J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a011247. DOI: 10.1101/cshperspect.a011247.
[6]
Wang Y, Ge P, Zhu Y. TLR2 and TLR4 in the brain injury caused by cerebral ischemia and reperfusion[J]. Mediators Inflamm, 2013, 2013: 124614. DOI: 10.1155/2013/124614.
[7]
Hakimizadeh E, Shamsizadeh A, Roohbakhsh A, et al. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats[J]. Iran J Basic Med Sci, 2017, 20(8): 863-869. DOI: 10.22038/IJBMS.2017.9107.
[8]
Sameer AS, Nissar S. Toll-like receptors (TLRs): structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility[J]. Biomed Res Int, 2021, 2021: 1157023. DOI: 10.1155/2021/1157023.
[9]
Zhang X, Hei Y, Bai W, et al. Toll-like receptor 2 attenuates traumatic brain injury-induced neural stem cell proliferation in dentate gyrus of rats[J]. Neural Plast, 2020, 2020: 9814978. DOI: 10.1155/2020/9814978.
[10]
Dutta D, Jana M, Majumder M, et al. Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo[J]. Nat Commun, 2021, 12(1): 5382. DOI: 10.1038/s41467-021-25767-1.
[11]
Zhao H, Lv J, Meng L, et al. Dual-specificity phosphatase 26-dificient neurons are susceptible to oxygen-glucose deprivation/reoxygenation-evoked apoptosis and proinflammatory response by affecting the TAK1-medaited JNK/P38 MAPK pathway[J]. Int Immunopharmacol, 2023, 117: 109980. DOI: 10.1016/j.intimp.2023.109980.
[12]
Köllisch G, Kalali BN, Voelcker V, et al. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes[J]. Immunology, 2005, 114(4): 531-541. DOI: 10.1111/j.1365-2567.2005.02122.x.
[13]
Roshan MH, Tambo A, Pace NP. The role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis[J]. Int J Inflam, 2016, 2016: 1532832. DOI: 10.1155/2016/1532832.
[14]
奥婷,张芹,肖淑英,等. HMGB1与缺血性脑卒中关系的研究进展[J].医学综述, 2018, 24(9): 1681-1686. DOI: 10.3969/j.issn.1006-2084.2018.09.004.
[15]
Arya P, Bhandari U. Involvement of the toll-like receptors-2/nuclear factor-kappa B signaling pathway in atherosclerosis induced by high-fat diet and zymosan a in C57BL/6 mice[J]. Indian J Pharmacol, 2020, 52(3): 203-209. DOI: 10.4103/ijp.IJP_567_19.
[16]
周敏,陈智利,张丽丽,等.缺血性脑卒中后血脑屏障内皮跨细胞转运的调控机制及靶向治疗[J].中华神经医学杂志, 2022, 21(2): 189-194. DOI: 10.3760/cma.j.cn115354-20201103-00868.
[17]
Kurzepa J, Kurzepa J, Golab P, et al. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke[J]. Int J Neurosci, 2014, 124(10): 707-716. DOI: 10.3109/00207454.2013.872102.
[18]
Zhu H, Dai R, Fu H, et al. MMP-9 upregulation is attenuated by the monoclonal TLR2 antagonist T2.5 after oxygen-glucose deprivation and reoxygenation in rat brain microvascular endothelial cells[J]. J Stroke Cerebrovasc Dis, 2019, 28(1): 97-106. DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.014.
[19]
Huang H, Zhong R, Xia Z, et al. Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways[J]. Molecules, 2014, 19(8): 11196-11210. DOI: 10.3390/molecules190811196.
[20]
Sun W, Ding Z, Xu S, et al. Crosstalk between TLR2 and Sphk1 in microglia in the cerebral ischemia/reperfusion-induced inflammatory response[J]. Int J Mol Med, 2017, 40(6): 1750-1758. DOI: 10.3892/ijmm.2017.3165.
[21]
Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation[J]. Nat Med, 2011, 17(7): 796-808. DOI: 10.1038/nm.2399.
[22]
Ziegler G, Harhausen D, Schepers C, et al. TLR2 has a detrimental role in mouse transient focal cerebral ischemia[J]. Biochem Biophys Res Commun, 2007, 359(3): 574-579. DOI: 10.1016/j.bbrc.2007.05.157.
[23]
Zhang P, Cheng G, Chen L, et al. Cerebral hypoxia-ischemia increases toll-like receptor 2 and 4 expression in the hippocampus of neonatal rats[J]. Brain Dev, 2015, 37(8): 747-752. DOI: 10.1016/j.braindev.2014.12.001.
[24]
Anttila JE, Whitaker KW, Wires ES, et al. Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 79(Pt A): 3-14. DOI: 10.1016/j.pnpbp.2016.07.003.
[25]
Huang Y, Cai B, Xu M, et al. Gene silencing of Toll-like receptor 2 inhibits proliferation of human liver cancer cells and secretion of inflammatory cytokines [J]. PLoS One, 2012, 7(7): e38890. DOI: 10.1371/journal.pone.0038890.
[26]
Nalamolu KR, Challa SR, Fornal CA, et al. Attenuation of the induction of TLRs 2 and 4 mitigates inflammation and promotes neurological recovery after focal cerebral ischemia[J]. Transl Stroke Res, 2021, 12(5): 923-936. DOI: 10.1007/s12975-020-00884-z.
[27]
王美娥,刘龙江,路永刚. Toll样受体对急性缺血性脑卒中临床疗效和预后的预测价值[J].中西医结合心脑血管病杂志, 2021, 19(5): 731-736. DOI: 10.12102/j.issn.1672-1349.2021.05.006.
[28]
Brea D, Blanco M, Ramos-Cabrer P, et al. Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values[J]. J Cereb Blood Flow Metab, 2011, 31(6): 1424-1431. DOI: 10.1038/jcbfm.2010.231.
[29]
Bohacek I, Cordeau P, Lalancette-Hébert M, et al. Toll-like receptor 2 deficiency leads to delayed exacerbation of ischemic injury[J]. J Neuroinflammation, 2012, 9: 191. DOI: 10.1186/1742-2094-9-191.
[30]
杨炎歌,段淑荣.脑梗死后VEGF及bFGF对神经干细胞增殖分化的机制研究进展[J].中国卒中杂志, 2016, 11(8): 704-708. DOI: 10.3969/j.issn.1673-5765.2016.08.018.
[31]
Moon S, Chang MS, Koh SH, et al. Repair mechanisms of the neurovascular unit after ischemic stroke with a focus on VEGF[J]. Int J Mol Sci, 2021, 22(16): 8543. DOI: 10.3390/ijms22168543.
[32]
刘琴.血管内皮生长因子、Toll样受体2与急性缺血性脑卒中颈动脉内膜中层增厚的相关性分析[J].实用医院临床杂志, 2021, 18(6): 169-172. DOI: 10.3969/j.issn.1672-6170.2021.06.048.
[33]
Qiu Y, Yin Q, Fei Y, et al. JLX001 modulated the inflammatory reaction and oxidative stress in pMCAO rats via inhibiting the TLR2/4-NF-κB signaling pathway[J]. Neurochem Res, 2019, 44(8): 1924-1938. DOI: 10.1007/s11064-019-02826-0.
[34]
Ling Y, Jin L, Ma Q, et al. Salvianolic acid a alleviated inflammatory response mediated by microglia through inhibiting the activation of TLR2/4 in acute cerebral ischemia-reperfusion[J]. Phytomedicine, 2021, 87: 153569. DOI: 10.1016/j.phymed.2011.153569.
[35]
Huang L, Chen C, Zhang X, et al. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion Via mediating autophagy and inflammation[J]. J Mol Neurosci, 2018, 64(1): 129-139. DOI: 10.1007/s12031-017-1006-x.
[36]
Tu XK, Yang WZ, Shi SS, et al. Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia[J]. Inflammation, 2011, 34(5): 463-470. DOI: 10.1007/s10753-010-9254-8.
[37]
Gad SN, Nofal S, Raafat EM, et al. Lixisenatide reduced damage in hippocampus CA1 neurons in a rat model of cerebral ischemia-reperfusion possibly via the ERK/P38 signaling pathway[J]. J Mol Neurosci, 2020, 70(7): 1026-1037. DOI: 10.1007/s12031-020-01497-9.
[38]
Chen X, Arumugam TV, Cheng YL, et al. Combination therapy with low-dose IVIG and a C1-esterase inhibitor ameliorates brain damage and functional deficits in experimental ischemic stroke[J]. Neuromolecular Med, 2018, 20(1): 6372. DOI: 10.1007/s12017-017-8474-6.
[39]
Xu XJ, Long JB, Jin KY, et al. Danshen-Chuanxiongqin injection attenuates cerebral ischemic stroke by inhibiting neuroinflammation via the TLR2/TLR4-MyD88-NF-κB pathway in tMCAO mice[J]. Chin J Nat Med, 2021, 19(10): 772-783. DOI: 10.1016/S1875-5364(21)60083-3.
[40]
Xie W, Zhou P, Sun Y, et al. Protective effects and target network analysis of ginsenoside Rg1 in cerebral ischemia and reperfusion injury: a comprehensive overview of experimental studies[J]. Cells, 2018, 7(12): 270. DOI: 10.3390/cells7120270.
[41]
Chen H, Guan B, Wang B, et al. Glycyrrhizin prevents hemorrhagic transformation and improves neurological outcome in ischemic stroke with delayed thromb-olysis through targeting peroxynitrite-mediated HMGB1 signaling[J]. Transl Stroke Res, 2020, 11(5): 967-982. DOI: 10.1007/s12975-019-00772-1.
[42]
李倩楠,尚津锋,姜婷月,等.基于Toll样受体信号通路探讨脑心通胶囊"脑心同治"的作用机制[J].中国中药杂志, 2022, 47(15): 4110-4118. DOI: 10.19540/j.cnki.cjcmm.20220211.401.
[43]
张军,周佩洋.七叶皂苷钠联合氯吡格雷治疗急性缺血性脑卒中的临床研究[J].中西医结合心脑血管病杂志, 2020, 18(17): 2898-2901. DOI: 10.12102/j.issn.1672-1349.2020.17.039.
[44]
Tajalli-Nezhad S, Karimian M, Beyer C, et al. The regulatory role of Toll-like receptors after ischemic stroke: neurosteroids as TLR modulators with the focus on TLR2/4[J]. Cell Mol Life Sci, 2019, 76(3): 523-537. DOI: 10.1007/s00018-018-2953-2.
[45]
王艳,兰坚,何顺学.血清血管内皮生长因子、Toll样受体与颈动脉支架成形术治疗急性缺血性脑卒中患者预后的相关性研究[J].实用医院临床杂志, 2019, 16(1): 30-32. DOI: 10.3969/j.issn.1672-6170.2019.01.010.
[46]
Hu H, Zou C. Mesenchymal stem cells in renal ischemia-reperfusion injury: biological and therapeutic perspectives[J]. Curr Stem Cell Res Ther, 2017, 12(3): 183-187. DOI: 10.2174/1574888X11666161024143640.
[47]
刘霜月,张玉莲,许潇莹,等.基于Toll样受体2/核转录因子kappa B通路探讨电针对脑缺血损伤大鼠的作用机制[J].针刺研究, 2019, 44(4): 242-247. DOI: 10.13702/j.1000-0607.180553.
[48]
黄伟,李佳,朱广为.针刺百会、人中穴对急性脑缺血大鼠模型NF-κB/IκB-α的影响[J].中华中医药杂志, 2017, 32(1): 298-302.
[49]
Lee HI, Lee SW, Kim NG, et al. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke[J]. J Biophotonics, 2017, 10(11): 1502-1513. DOI: 10.1002/jbio.201600244.
[50]
Ma W, Xie X, Shao X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway[J]. Cell Prolif, 2018, 51(6): e12503. DOI: 10.1111/cpr.12503.
[51]
Ma W, Zhan Y, Zhang Y, et al. Enhanced neural regeneration with a concomitant treatment of framework nucleic acid and stem cells in spinal cord injury[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2095-2106. DOI: 10.1021/acsami.9b19079.
[52]
Zhou M, Zhang T, Zhang B, et al. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting Toll-like receptor 2 signaling pathway in acute ischemic stroke[J]. ACS Nano, 2022, 16(1): 1456-1470. DOI: 10.1021/acsnano.1c09626.
[1] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[2] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[3] 罗皓天, 陈丹莹, 王伟财, 周晨. 基质细胞衍生因子1/CXC趋化因子受体4轴在骨免疫相关疾病中的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 218-227.
[4] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[5] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[6] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[7] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[8] 刁世童, 王伊帆, 董润, 彭劲民, 何淑华, 翁利, 杜斌. eSOFA,qSOFA,SIRS对于脓毒症患者预后预测价值的比较:一项基于非ICU住院患者的前瞻性队列研究[J]. 中华重症医学电子杂志, 2023, 09(02): 143-148.
[9] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[10] 任香凝, 郑晓明. 缺血性脑卒中与外周免疫应答的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 175-179.
[11] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[12] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
[13] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
[14] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
[15] 邓颖, 黄山, 胡慧秀, 孙超. 老年缺血性脑卒中患者危险因素聚集情况分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 344-349.
阅读次数
全文


摘要