切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (05) : 315 -319. doi: 10.3877/cma.j.issn.2095-123X.2023.05.010

综述

帕金森病在病理生理学中的研究进展
金刚, 李英真, 施维, 李博()   
  1. 274400 山东菏泽,曹县人民医院神经内科
    250000 济南,解放军联勤保障部队第九六〇医院神经外科
  • 收稿日期:2022-07-28 出版日期:2023-10-15
  • 通信作者: 李博

Research progress of Parkinson's disease in pathophysiology

Gang Jin, Yingzhen Li, Wei Shi, Bo Li()   

  1. Department of Neurology, Caoxian People's Hospital, Heze 274400, China
    Department of Neurosurgery, the 960th Hospital of PLA, Ji'nan 250000, China
  • Received:2022-07-28 Published:2023-10-15
  • Corresponding author: Bo Li
  • Supported by:
    National Natural Science Foundation of China(81471214)
引用本文:

金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.

Gang Jin, Yingzhen Li, Wei Shi, Bo Li. Research progress of Parkinson's disease in pathophysiology[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(05): 315-319.

帕金森病(PD)是一种复杂且与年龄相关的神经退行性疾病,其发病机制仍不完全明确。PD的发生和发展与基因遗传、基因突变、线粒体功能障碍、氧化应激反应、免疫炎性机制、胃肠相关功能障碍、神经黑色素过度累积、铁死亡调控机制等密切相关,各因素既能交叉相互促进又能独立发挥作用。本文围绕PD在病理生理学中的发病机制的研究进展展开综述,旨在为PD的治疗及药物开发寻求新思路。

Parkinson's disease (PD) is a complex and age-related neurodegenerative disease, and its pathogenesis is still not fully understood. The occurrence and development of PD are closely related to genetic inheritance, gene mutations, mitochondrial dysfunction, oxidative stress, immune inflammatory mechanisms, gastrointestinal-related dysfunction, excessive accumulation of neuromelanin, and iron death regulation mechanisms. Various factors can cross each other and play an independent role. This paper reviews the research progress on the pathogenesis of PD in pathophysiology, aiming to seek new ideas for the treatment and drug development of PD.

[1]
武雅静,张丽芳,邓远飞.帕金森病患者认知功能的临床分析[J].中华脑科疾病与康复杂志(电子版), 2019, 9(5): 271-276. DOI: 10.3877/cma.j.issn.2095-123X.2019.05.004.
[2]
张文彦,陈韦陶.帕金森病患者人格特征的研究进展[J].中风与神经疾病杂志, 2020, 37(12): 1144-1146. DOI: 10.19845/j.cnki.zfysjjbzz.2020.0543.
[3]
魏颖鸿.帕金森病基因多态性的研究进展[J].实用老年医学, 2019, 33(7): 637-641. DOI: 10.3969/j.issn.1003-9198.2019.07.004.
[4]
Trudler D, Nash Y, Frenkel D. New insights on Parkinson's disease genes: the link between mitochondria impairment and neuroinflammation[J]. J Neural Transm (Vienna), 2015, 122(10): 1409-1419. DOI: 10.1007/s00702-015-1399-z.
[5]
Singh A, Zhi L, Zhang H. LRRK2 and mitochondria: Recent advances and current views[J]. Brain Res, 2019, 1702: 96-104. DOI: 10.1016/j.brainres.2018.06.010.
[6]
刘越存.分子伴侣辅因子CHIP与帕金森病PINK1基因的相互作用研究[D].广州:南方医科大学, 2009. DOI: 10.7666/d.y1553797.
[7]
Linnertz C, Lutz MW, Ervin JF, et al. The genetic contributions of SNCA and LRRK2 genes to Lewy Body pathology in Alzheimer's disease[J]. Hum Mol Genet, 2014, 23(18): 4814-4821. DOI: 10.1093/hmg/ddu196.
[8]
王莉,娄桂予,卞莎莎,等.一例青少年型帕金森病患者Parkin基因的突变鉴定[J].中华医学遗传学杂志, 2019, 36(4): 344-347. DOI: 10.3760/cma.j.issn.1003-9406.2019.04.013.
[9]
Yuan X, Cao B, Wu Y, et al. Association analysis of SNP rs11868035 in SREBF1 with sporadic Parkinson's disease, sporadic amyotrophic lateral sclerosis and multiple system atrophy in a Chinese population[J]. Neurosci Lett, 2018, 664: 128-132. DOI: 10.1016/j.neulet.2017.11.015.
[10]
Giri S, Naiya T, Roy S, et al. A compound heterozygote for GCH1 mutation represents a case of atypical dopa-responsive dystonia[J]. J Mol Neurosci, 2019, 68(2): 214-220. DOI: 10.1007/s12031-019-01301-3.
[11]
Schreglmann SR, Houlden H. VPS13C-another hint at mitochondrial dysfunction in familial Parkinson's disease[J]. Mov Disord, 2016, 31(9): 1340. DOI: 10.1002/mds.26682.
[12]
许琴,罗晓光,初巧红,等.中国北方女性帕金森病患者与线粒体ND4基因A11084G位点的相关性研究[J].中华神经医学杂志, 2017, 16(4): 392-397. DOI: 10.3760/cma.j.issn.1671-8925.2017.04.013.
[13]
汪志鹏,高歌,段春礼,等. α-突触核蛋白对线粒体膜造成孔道样损伤[J].中国生物化学与分子生物学报, 2018, 34(9): 1013-1020. DOI: 10.13865/j.cnki.cjbmb.2018.09.14.
[14]
Mortiboys H, Johansen KK, Aasly JO, et al. Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2[J]. Neurology, 2010, 75(22): 2017-2020. DOI: 10.1212/WNL.0b013e3181ff9685.
[15]
Hu ZL, Sun T, Lu M, et al. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease via promoting mitophagy[J]. Brain Behav Immun, 2019, 81: 509-522. DOI: 10.1016/j.bbi.2019.07.009.
[16]
Rango M, Bresolin N. Brain mitochondria, aging, and Parkinson's disease[J]. Genes (Basel). 2018, 9(5): 250. DOI: 10.3390/genes9050250.
[17]
Bury AG, Pyle A, Elson JL, et al. Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease[J]. Ann Neurol, 2017, 82(6): 1016-1021. DOI: 10.1002/ana.25099.
[18]
Azkona G, López de Maturana R, et al. LRRK2 Expression is deregulated in fibroblasts and neurons from Parkinson patients with mutations in PINK1LRRK2 expression is deregulated in fibroblasts and neurons from Parkinson patients with mutations in PINK1[J]. Mol Neurobiol, 2018, 55(1): 506-516. DOI: 10.1007/s12035-016-0303-7.
[19]
Puspita L, Chung SY, Shim JW. Oxidative stress and cellular pathologies in Parkinson's disease[J]. Mol Brain, 2017, 10(1): 53. DOI: 10.1186/s13041-017-0340-9.
[20]
von Leden RE, Yauger YJ, Khayrullina G, et al. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets[J]. J Neurotrauma, 2017, 34(4): 755-764. DOI: 10.1089/neu.2016.4486.
[21]
Steiner RE, Ibba M. Bridging the gap between tRNA modifications and the respiratory chain[J]. Biochemistry, 2018, 57(18): 2565-2566. DOI: 10.1021/acs.biochem.8b00377.
[22]
Krashia P, Martini A, Nobili A, et al. On the properties of identified dopaminergic neurons in the mouse substantia nigra and ventral tegmental area[J]. Eur J Neurosci, 2017, 45(1): 92-105. DOI: 10.1111/ejn.13364.
[23]
Milovanovi B, Ili J, Stankovi IM, et al. A simulation of free radicals induced oxidation of dopamine in aqueous solution[J]. Chemical Physics, 2019, 524: 26-30. DOI: 10.1016/j.chemphys.2019.05.001.
[24]
Kim A, Kozina E, Kolacheva A, et al. Cooperative synthesis of dopamine by striatal non-dopaminergic neurons as a mechanism of neuroplasticity at parkinsonism[J]. Parkinsonism & Related Disorders, 2018, 46(2): e26-e27. DOI: 10.1016/j.parkreldis.2017.11.086.
[25]
Weng M, Xie X, Liu C, et al. The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson's disease[J]. Parkinsons Dis, 2018, 2018: 9163040. DOI: 10.1155/2018/9163040.
[26]
Seaton TA, Cooper JM, Schapira AH. Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors[J]. Brain Res, 1997, 777(1-2): 110-8. DOI: 10.1016/s0006-8993(97)01034-2.
[27]
Faucheux BA, Martin ME, Beaumont C, et al. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson's disease[J]. J Neurochem, 2019, 86(5): 1142-1148. DOI: 10.1046/j.1471-4159.2003.01923.x.
[28]
Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease[J]. J Neurochem, 2010, 52(2): 381-389. DOI: 10.1111/j.1471-4159.1989.tb09133.x.
[29]
Jenner P, Dexter DT, Sian J, et al. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The Royal kings and queens Parkinson's disease research group[J]. Ann Neurol, 1992, 32: S82-S87. DOI: 10.1002/ana.410320714.
[30]
Mogi M, Harada M, Kondo T, et al. Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson's disease[J]. Neurosci Lett, 1995, 193(2): 129-132. DOI: 10.1016/0304-3940(95)11686-q.
[31]
De Astis S, Corradini I, Morini R, et al. Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile[J]. Nanoscale, 2013, 5(22): 10963-10974. DOI: 10.1039/c3nr03534d.
[32]
Stypuła G, Kunert-Radek J, Stepień H, et al. Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with Parkinson's disease[J]. Neuroimmunomodulation, 1996, 3(2-3): 131-134. DOI: 10.1159/000097237.
[33]
Sommer A, Marxreiter F, Krach F, et al. Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson's disease[J]. Cell Stem Cell, 2018, 23(1): 123-131.e6. DOI: 10.1016/j.stem.2018.06.015.
[34]
Uemura N, Yagi H, Uemura MT, et al. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve[J]. Mol Neurodegener, 2018, 13(1): 21. DOI: 10.1186/s13024-018-0257-5.
[35]
Pape HC, Dwenger A, Remmers D, et al. 45 Pattern of intestinal permeability changes and inflammatory response in polytrauma patients[J]. Shock, 1995, 3(5): 14.
[36]
Plascencia Germán, Perry G. Implication of ferroptosis iron-dependent programmed cell death mechanism in neurodegeneration: molecular and cell biology/oxidative stress[J]. Alzheimer's & Dementia, 2020, 16(s3): 1-2. DOI: 10.1002/alz.043978.
[37]
Umemura M, Kim JH, Aoyama H, et al. The iron chelating agent, deferoxamine detoxifies Fe(Salen)-induced cytotoxicity[J]. J Pharmacol Sci, 2017, 134(4): 203-210. DOI: 10.1016/j.jphs.2017.07.002.
[38]
姜宏,陈文芳,谢俊霞.帕金森病模型大鼠脑内多巴胺与铁含量的关系[J].生理学报, 2001, 53(5): 329-333. DOI: 10.3321/j.issn:0371-0874.2001.05.002.
[39]
Faucheux BA, Martin ME, Beaumont C, et al. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson's disease[J]. J Neurochem, 2010, 86(5): 1142-1148. DOI: 10.1046/j.1471-4159.2003.01923.x.
[40]
Vosahlikova M, Ujcikova H, Hlouskova M, et al. Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of δ-opioid receptor amount and function[J]. Biochem Pharmacol, 2018, 154: 452-463. DOI: 10.1016/j.bcp.2018.06.004.
[1] 卫怡妙, 李亚芹, 赵卫红. 环状RNA与宫颈癌发病机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 512-516.
[2] 张非红, 夏斌. 肠道菌群失调与新生儿坏死性小肠结肠炎发病机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 523-527.
[3] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[4] 黄嘉明, 段红霞, 赖逾鹏, 王大吉, 刘兴娇, 沈鑫, 王梅英. 狼疮性肾炎慢性化中肾脏固有细胞的间充质化研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 347-352.
[5] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[6] 李文捷, 卢弘. 幼年特发性关节炎相关葡萄膜炎的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 40-44.
[7] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[8] 郑丽华, 钱一菁, 黄崇甄, 周春娜. 山茱萸环烯醚萜苷改善6-OHDA诱导帕金森病细胞模型的损伤[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 324-331.
[9] 李玺琳, 章邱东. 帕金森病患者胃肠功能障碍特点及其风险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 145-149.
[10] 耿磊, 张照婷, 许磊, 黄海, 孙毅, 杨伏猛, 徐凯, 胡春峰. 帕金森病前驱期基底神经节环路磁共振弥散张量成像的应用研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 995-1003.
[11] 杨团峰, 孟雪, 王艳香, 卢葭, 孔德生, 赵元立, 刘献增. 男性帕金森病患者球海绵体肌反射初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(01): 28-32.
[12] 谢艾伦, 郑冬燕, 蔡紫薇, 卢仁建, 彭永明, 张贺, 陈家隆. 鱼藤酮通过降低线粒体钙离子单向转运体蛋白表达促进多巴胺能神经元铁死亡[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 71-78.
[13] 王敏, 张妍, 王盈熹, 赵龙, 夏书月. 外泌体在慢性阻塞性肺疾病中的作用[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 45-51.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 韩远远, 于紫涵, 杨玲, 程弘禹, 宋春杰. C反应蛋白与白蛋白比值和中性粒细胞与淋巴细胞比值对老年帕金森病的诊断价值[J]. 中华老年病研究电子杂志, 2023, 10(01): 14-19.
阅读次数
全文


摘要