切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2024, Vol. 14 ›› Issue (05) : 312 -317. doi: 10.3877/cma.j.issn.2095-123X.2024.05.008

综述

上肢外骨骼机器人在脑卒中康复中的应用与研究进展
陈冬冬1, 余程冬1, 曹晓光1,()   
  1. 1.230000 合肥市第二人民医院(安徽医科大学附属合肥医院)康复医学科
  • 收稿日期:2023-12-20 出版日期:2024-10-15
  • 通信作者: 曹晓光

Application and research progress of upper limb exoskeleton robot in stroke rehabilitation

Dongdong Chen1, Chengdong Yu1, Xiaoguang Cao1,()   

  1. 1.Department of Rehabilitation Medicine, The Second People's Hospital of Hefei(Hefei Hospital Affiliated to Anhui Medical University),Hefei 230000,China
  • Received:2023-12-20 Published:2024-10-15
  • Corresponding author: Xiaoguang Cao
引用本文:

陈冬冬, 余程冬, 曹晓光. 上肢外骨骼机器人在脑卒中康复中的应用与研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 312-317.

Dongdong Chen, Chengdong Yu, Xiaoguang Cao. Application and research progress of upper limb exoskeleton robot in stroke rehabilitation[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(05): 312-317.

脑卒中可导致永久性残疾、生活质量下降,而上肢功能的恢复是脑卒中后康复的重要目标和难点。外骨骼式康复机器人与人体肢体结构相似,佩戴于患者肢体上可以精准带动各个关节进行运动,有效地增加上肢肌力和促进上肢的分离运动,促进脑卒中后上肢功能的恢复。但是上肢外骨骼机器人在降低上肢肌张力和提高日常生活能力方面还存在争议,对不同时期患者的训练强度、时间及频率尚未达成共识。本文围绕上肢外骨骼机器人在脑卒中康复中的应用与研究进展展开综述,以期为今后脑卒中患者上肢功能的康复提供理论依据。

Stroke can lead to permanent disability and a decline in quality of life,with the recovery of upper limb function being an important goal and challenge in stroke rehabilitation. Exoskeleton rehabilitation robots are similar in structure to the human limbs and can be worn on the patient's limbs to precisely move each joint and perform movements, effectively increasing upper limb strength and promoting separate movements of the upper limbs, thereby promoting the recovery of upper limb function after stroke. However, there is still controversy over the effectiveness of upper limb exoskeleton robots in reducing upper limb muscle tension and improving daily living ability, and there is no consensus on the training intensity, duration, and frequency for patients at different stages of recovery. This article reviews the application and research progress of upper limb exoskeleton robots in stroke rehabilitation, aiming to provide reference for the upper limb functional rehabilitation of stroke patients in the future.

[1]
姜佳慧,毕鸿雁.基于虚拟现实技术施经颅直流电刺激对脑卒中患者上肢功能影响的Meta 分析[J].中华脑科疾病与康复杂志(电子版), 2023, 13(2): 75-83. DOI: 10.3877/cma.j.issn.2095-123X.2023.02.002.Jiang JH, Bi HY. Meta-analysis of the effect of transcranial direct current stimulation on upper limb function in stroke patients based on virtual reality technology[J]. Chin J Brain Dis Rehabil(Electronic Edition),2023,13(2):75-83.DOI:10.3877/cma.j.issn.2095-123X.2023.02.002.
[2]
Abdullahi A, Wong TWL, Ng SSM. Variation in the rate of recovery in motor function between the upper and lower limbs in patients with stroke: some proposed hypotheses and their implications for research and practice[J]. Front Neurol, 2023, 14:1225924.DOI:10.3389/fneur.2023.1225924.
[3]
张莉,张明,张秀芳,等.基于想象疗法的闭环脑机接口训练对脑卒中后偏瘫患者上肢功能的影响[J].中华脑科疾病与康复杂志(电子版), 2022, 12(6): 360-364. DOI: 10.3877/cma.j.issn.2095-123X.2022.06.008.Zhang L, Zhang M, Zhang XF, et al. Effect of closed-loop brain computer interface training based on imagination therapy on upper limb function of patients with hemiplegia after stroke[J].Chin J Brain Dis Rehabil (Electronic Edition), 2022, 12(6): 360-364.DOI:10.3877/cma.j.issn.2095-123X.2022.06.008.
[4]
姚滔涛,王宁华,陈卓铭.脑卒中运动功能训练的循证医学研究[J].中国康复医学杂志,2010,25(6):565-570.DOI:10.3969/j.issn.1001-1242.2010.06.017.Yao TT, Wang NH, Chen ZM. Evidence-based medical research on motor function training of stroke[J]. Chin J Rehabil Med, 2010,25(6):565-570.DOI:10.3969/j.issn.1001-1242.2010.06.017.
[5]
Bertani R,Melegari C,De Cola MC,et al.Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis[J].Neurol Sci,2017,38(9):1561-1569.DOI:10.1007/s10072-017-2995-5.
[6]
He C, Xiong CH, Chen ZJ, et al. Preliminary assessment of a postural synergy-based exoskeleton for post-stroke upper limb rehabilitation[J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29:1795-1805.DOI:10.1109/tnsre.2021.3107376.
[7]
Molteni F,Gasperini G,Cannaviello G,et al.Exoskeleton and endeffector robots for upper and lower limbs rehabilitation: narrative review[J].PM R,2018,10(9 Suppl 2):S174-S188.DOI:10.1016/j.pmrj.2018.06.005.
[8]
王丽,张秀峰,马岩,等.脑卒中患者上肢康复机器人及评价方法综述[J]. 北京生物医学工程, 2015, 34(5): 526-532. DOI:10.3969/j.issn.1002-3208.2015.05.18.Wang L, Zhang XF, Ma Y, et al. Summary of rehabilitation robot for upper limbs and evaluation methods for stroke patients[J].Beijing Biomedical Engineering, 2015, 34(5): 526-532. DOI: 10.3969/j.issn.1002-3208.2015.05.18.
[9]
Nef T,Mihelj M,Riener R.ARMin:a robot for patient-cooperative arm therapy[J]. Med Biol Eng Comput, 2007, 45(9): 887-900.DOI:10.1007/s11517-007-0226-6.
[10]
Just F, Ozen O, Tortora S, et al. Feedforward model based arm weight compensation with the rehabilitation robot ARMin[J].IEEE Int Conf Rehabil Robot, 2017, 2017: 72-77. DOI: 10.1109/icorr.2017.8009224.
[11]
胡恒心,于旭东.智能上肢外骨骼机器人研究进展与展望[J].人工智能,2023,10(6):43-58.DOI:10.16453/j.2096-5036.202351.Hu HX, Yu XD. Research progress and prospect of intelligent upper limb exoskeleton robot[J].AI-View,2023,10(6):43-58.DOI:10.16453/j.2096-5036.202351.
[12]
Li QL. A novel 5-DOF exoskeletal rehabilitation robot system for upper limbs[J]. High Technology Letters, 2009, 15(3): 245-249.DOI:10.3772/j.issn.1006-6748.2009.03.004.
[13]
Babaiasl M, Mahdioun SH, Jaryani P, et al. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke[J]. Disabil Rehabil Assist Technol,2016,11(4):263-280.DOI:10.3109/17483107.2014.1002539.
[14]
赵彤彤,章悦,曹港生,等.一种新型7 自由度上肢康复外骨骼机器人的结构设计和运动学仿真[J].机械传动,2022,46(2):66-72.DOI:10.16578/j.issn.1004.2539.2022.02.011.Zhao TT,Zhang Y,Cao GS,et al.Structure design and kinematics simulation of a novel 7-DOF upper limb rehabilitation exoskeleton robot[J]. Journal of Mechanical Transmission, 2022, 46(2): 66-72.DOI:10.16578/j.issn.1004.2539.2022.02.011.
[15]
Zhong B, Niu W, Broadbent E, et al. Bringing psychological strategies to robot-assisted physiotherapy for enhanced treatment efficacy[J]. Front Neurosci, 2019, 13: 984. DOI: 10.3389/fnins.2019.00984.
[16]
Lessard S, Pansodtee P, Robbins A, et al. A soft exosuit for flexible upper-extremity rehabilitation[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(8): 1604-1617. DOI: 10.1109/tnsre.2018.2854219.
[17]
Tang C, Zhou T, Zhang Y, et al. Bilateral upper limb robotassisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG[J]. Eur J Med Res,2023,28(1):603.DOI:10.1186/s40001-023-01565-x.
[18]
Shen Y,Sun J,Ma J,et al.Admittance control scheme comparison of EXO-UL8: a dual-arm exoskeleton robotic system[J]. IEEE Int Conf Rehabil Robot, 2019, 2019: 611-617. DOI: 10.1109/icorr.2019.8779545.
[19]
Calabrò RS, Naro A, Russo M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial[J]. J Neuroeng Rehabil, 2018, 15(1): 35. DOI: 10.1186/s12984-018-0377-8.
[20]
袁娅金,张桂仙,冉利,等.脑卒中后神经可塑性相关信号通路的研究进展[J]. 中华老年心脑血管病杂志, 2020, 22(1): 106-108.DOI:10.3969/j.issn.1009-0126.2020.01.029.Yuan YJ, Zhang GX, Ran L, et al. Research progress on signal pathways related to neuroplasticity after stroke[J]. Clin J Geriatr Heart Brain Vessel Dis, 2020, 22(1): 106-108. DOI: 10.3969/j.issn.1009-0126.2020.01.029.
[21]
Lotze M, Ladda AM, Stephan KM. Cerebral plasticity as the basis for upper limb recovery following brain damage[J]. Neurosci Biobehav Rev, 2019, 99: 49-58. DOI: 10.1016/j.neubiorev.2019.01.027.
[22]
Hao J, Xie H, Harp K, et al. Effects of virtual reality intervention on neural plasticity in stroke rehabilitation:a systematic review[J].Arch Phys Med Rehabil, 2022, 103(3): 523-541. DOI: 10.1016/j.apmr.2021.06.024.
[23]
Sale P, Infarinato F, Del Percio C, et al. Electroencephalographic markers of robot - aided therapy in stroke patients for the evaluation of upper limb rehabilitation[J]. Int J Rehabil Res,2015,38(4):294-305.DOI:10.1097/mrr.0000000000000125.
[24]
Monge-Pereira E, Ibañez-Pereda J, Alguacil-Diego IM, et al. Use of electroencephalography brain-computer interface systems as a rehabilitative approach for upper limb function after a stroke: a systematic review[J]. PM R, 2017, 9(9): 918-932. DOI: 10.1016/j.pmrj.2017.04.016.
[25]
Singh N, Saini M, Kumar N, et al. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial[J]. J Neuroeng Rehabil, 2021, 18(1):76.DOI:10.1186/s12984-021-00867-7.
[26]
李宇淇,黄国志,路鹏程,等.上肢康复机器人联合上肢康复训练对脑卒中恢复期偏瘫患者的影响[J].康复学报,2022,32(2):111-116.DOI:10.3724/SP.J.1329.2022.02004.Li YQ, Huang GZ, Lu PC, et al. Effect of rehabilitation robot combined with upper limb rehabilitation training on hemiplegic patients in recovery stage of stroke[J]. Rehabilitation Medicine,2022,32(2):111-116.DOI:10.3724/SP.J.1329.2022.02004.
[27]
Amano Y, Noma T, Etoh S, et al. Reaching exercise for chronic paretic upper extremity after stroke using a novel rehabilitation robot with arm-weight support and concomitant electrical stimulation and vibration: before-and-after feasibility trial[J]. Biomed Eng Online,2020,19(1):28.DOI:10.1186/s12938-020-00774-3.
[28]
杜滨红,马丽虹,翟霞,等.任务导向的上肢康复机器人训练对脑卒中后上肢功能的疗效观察[J]. 中国康复医学杂志, 2022,37(11):1551-1554.DOI:10.3969/j.issn.1001-1242.2022.11.017.Du BH, Ma LH, Zhai X, et al. Effect of task-oriented upper limb rehabilitation robot training on upper limb function after stroke[J].Chin J Rehabil Med, 2022, 37(11): 1551-1554. DOI: 10.3969/j.issn.1001-1242.2022.11.017.
[29]
范虹,吴月峰,董晓琼,等.上肢康复机器人对急性期脑卒中患者上肢运动功能恢复的影响[J]. 中华物理医学与康复杂志,2016, 38(2): 104-107. DOI: 10.3760/cma.j.issn.0254-1424.2016.02.006.Fan H, Wu YF, Dong XQ, et al. Robots for the rehabilitation of upper limb motor function after stroke[J]. Chin J Phys Med Rehabil, 2016, 38(2): 104-107. DOI: 10.3760/cma.j.issn.0254-1424.2016.02.006.
[30]
Everard G, Declerck L, Detrembleur C, et al. New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis[J]. Eur J Phys Rehabil Med,2022,58(4):530-548.DOI:10.23736/s1973-9087.22.07404-4.
[31]
Kim JA, Chun MH, Lee A, et al. The effect of training using an upper limb rehabilitation robot (HEXO-UR30A) in chronic stroke patients: a randomized controlled trial[J]. Medicine (Baltimore),2023,102(12):e33246.DOI:10.1097/md.0000000000033246.
[32]
Lee BO,Saragih ID,Batubara SO.Robotic arm use for upper limb rehabilitation after stroke: a systematic review and meta-analysis[J]. Kaohsiung J Med Sci, 2023, 39(5): 435-445. DOI: 10.1002/kjm2.12679.
[33]
Iwamoto Y, Tanaka R, Imura T, et al. Does frequent use of an exoskeletal upper limb robot improve motor function in stroke patients?[J].Disabil Rehabil,2023,45(7):1185-1191.DOI:10.1080/09638288.2022.2055163.
[34]
Frisoli A, Procopio C, Chisari C, et al. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke[J]. J Neuroeng Rehabil, 2012, 9: 36. DOI: 10.1186/1743-0003-9-36.
[35]
朱琳,席艳玲,黄海霞,等.机器人辅助训练对脑卒中患者上肢屈肌痉挛的疗效观察及表面肌电图分析[J].中国康复医学杂志, 2020, 35(8): 954-958. DOI: 10.3969/j.issn.1001-1242.2020.08.013.Zhu L, Xi YL, Huang HX, et al. Effect of robot-assisted training on upper limb flexor spasm in stroke patients and analysis of surface electromyography[J]. Chin J Rehabil Med, 2020, 35(8):954-958.DOI:10.3969/j.issn.1001-1242.2020.08.013.
[36]
Jiang S, You H, Zhao W, et al. Effects of short-term upper limb robot-assisted therapy on the rehabilitation of sub-acute stroke patients[J]. Technol Health Care, 2021, 29(2): 295-303. DOI:10.3233/thc-202127.
[37]
Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, et al.Effects of robot-assisted therapy for the upper limb after stroke[J].Neurorehabil Neural Repair,2017,31(2):107-121.DOI:10.1177/1545968316666957.
[38]
Frisoli A, Barsotti M, Sotgiu E, et al. A randomized clinical control study on the efficacy of three-dimensional upper limb robotic exoskeleton training in chronic stroke[J]. J Neuroeng Rehabil,2022,19(1):14.DOI:10.1186/s12984-022-00991-y.
[39]
Bertani R,Melegari C,De Cola MC,et al.Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis[J]. Neurol Sci, 2017, 38(9): 1561-1569. DOI:10.1007/s10072-017-2995-5.
[40]
Iwamoto Y, Imura T, Suzukawa T, et al. Combination of exoskeletal upper limb robot and occupational therapy improve activities of daily living function in acute stroke patients[J]. J Stroke Cerebrovasc Dis, 2019, 28(7): 2018-2025. DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.006.
[41]
Mehrholz J, Pohl M, Platz T, et al. Electromechanical and robotassisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke[J]. Cochrane Database Syst Rev, 2015, 2015(11): Cd006876. DOI: 10.1002/14651858.CD006876.pub4.
[42]
吴丹丹, 吴巍巍. 康复治疗脑卒中肩关节半脱位的效果分析[J].中国现代药物应用,2023,17(20):163-165.DOI:10.14164/j.cnki.cn11-5581/r.2023.20.044.Wu DD, Wu WW. Analysis of the effect of rehabilitation treatment on subluxation of the shoulder joint after stroke[J]. Chin J Mod Drug Appl, 2023, 17(20): 163-165. DOI: 10.14164/j.cnki.cn11-5581/r.2023.20.044.
[43]
龙耀斌.康复机器人训练对脑卒中偏瘫患者上肢功能的影响[J].中国康复,2012,27(3):171-173.DOI:10.3870/zgkf.2012.03.004.Long YB. Effect of rehabilitation robot on upper extremity function of hemiplegic patients[J]. Chin J Rehabil, 2012, 27(3):171-173.DOI:10.3870/zgkf.2012.03.004.
[44]
孙丽,张艳明,王伟.上肢康复机器人辅助训练对卒中后上肢痉挛伴肩关节半脱位患者运动功能的作用[J].中国脑血管病杂志,2016,13(6):302-306.DOI:10.3969/j.issn.1672-5921.2016.06.005.Sun L, Zhang YM, Wang W. Effect of robot-assisted upper limb rehabilitation training on motor function in patients with upper limb spasticity with shoulder subluxation after stroke[J]. Chin J Cerebrovasc Dis,2016,13(6):302-306.DOI:10.3969/j.issn.1672-5921.2016.06.005.
[45]
Janssen H, Bernhardt J, Collier JM, et al. An enriched environment improves sensorimotor function post-ischemic stroke[J]. Neurorehabil Neural Repair, 2010, 24(9): 802-813. DOI: 10.1177/1545968310372092.
[46]
Curuk E, Goyal N, Aruin AS. The effect of motor and cognitive tasks on gait in people with stroke[J]. J Stroke Cerebrovasc Dis,2019, 28(11): 104330. DOI: 10.1016/j.jstrokecerebrovasdis.2019.104330.
[47]
苏丽丽,方小养,林玲,等.上肢机器人虚拟情景任务导向性训练对脑卒中患者认知功能影响的研究[J].中国康复,2022,37(2):101-104.DOI:10.3870/zgkf.2022.02.007.Su LL, Fang XY, Lin L, et al. Study on the effects of upper limb robot virtual situation task-based training on cognitive function in stroke patients[J].Chin J Rehabil,2022,37(2):101-104.DOI:10.3870/zgkf.2022.02.007.
[48]
Chen ZJ, Gu MH, He C, et al. Robot-assisted arm training in stroke individuals with unilateral spatial neglect: a pilot study[J].Front Neurol,2021,12:691444.DOI:10.3389/fneur.2021.691444.
[49]
Kim WS, Cho S, Ku J, et al. Clinical application of virtual reality for upper limb motor rehabilitation in stroke: review of technologies and clinical evidence[J]. J Clin Med, 2020, 9(10):3369.DOI:10.3390/jcm9103369.
[50]
Wolpaw JR, Millán JDR, Ramsey NF. Brain-computer interfaces:definitions and principles[J]. Handb Clin Neurol, 2020, 168: 15-23.DOI:10.1016/b978-0-444-63934-9.00002-0.
[51]
李翔,陈健尔,张辉煌,等.脑机接口康复训练机器人在脑卒中患者上肢功能康复中的研究进展[J].中国康复医学杂志,2023,38(2):263-268.DOI:10.3969/j.issn.1001-1242.2023.02.023.Xiang L, Chen JE, Zhang HH, et al. Research progress of braincomputer interface rehabilitation training robot in upper limb functional rehabilitation of stroke patients[J].Chin J Rehabil Med,2023,38(2):263-268.DOI:10.3969/j.issn.1001-1242.2023.02.023.
[52]
Lu Z, Tong KY, Shin H, et al. Advanced myoelectric control for robotic hand-assisted training: outcome from a stroke patient[J].Front Neurol,2017,8:107.DOI:10.3389/fneur.2017.00107.
[53]
Nam C, Rong W, Li W, et al. The effects of upper-limb training assisted with an electromyography - driven neuromuscular electrical stimulation robotic hand on chronic stroke[J]. Front Neurol,2017,8:679.DOI:10.3389/fneur.2017.00679.
[54]
Gharabaghi A, Kraus D, Leão MT, et al. Coupling brain-machine interfaces with cortical stimulation for brain - state dependent stimulation:enhancing motor cortex excitability for neurorehabilitation[J].Front Hum Neurosci,2014,8:122.DOI:10.3389/fnhum.2014.00122.
[1] 孙俊锋, 涂家金, 付丹, 蒋满香, 刘金晶, 崔乃硕. 手部烧伤瘢痕挛缩畸形整形术后综合康复联合点阵二氧化碳激光治疗的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 411-415.
[2] 钟锴, 蒋铁民, 张瑞青, 吐尔干艾力·阿吉, 邵英梅, 郭强. 加速康复外科在肝囊型棘球蚴病肝切除术中的应用分析[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 425-429.
[3] 李月平, 李科, 乔禹铭, 钟美浓. 前列腺热蒸汽消融术医护康一体化快速康复模式初探[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 464-472.
[4] 曹健, 冯高华, 周卫军, 陈诚, 沈王丰, 吴英姿. 补脾益肺膏联合肺康复训练治疗慢性阻塞性肺疾病的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 781-784.
[5] 杨轲, 丁增巴姆, 马静, 李盼盼, 陈婷. 全程无缝隙肺康复训练在单孔胸腔镜肺叶切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 801-804.
[6] 江西省神经外科质量控制中心. 江西省心源性脑卒中多学科协作防治专家共识[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 264-277.
[7] 张洪, 杨琪, 罗静, 唐茜, 邓鸿, 巩文艳, 王丽坤, 刘静, 艾双春. 多靶点神经调控技术对卒中后上肢运动功能障碍患者的脑网络功能连接研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 278-284.
[8] 许方军, 曹晓光, 王修敏, 王婷, 陈冬冬, 余程冬, 张鹤言. 基于闭环理论的动作观察疗法联合躯干控制训练对脑卒中后下肢运动的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 292-299.
[9] 张雅文, 尹昱, 陈江龙, 杨玉慧, 吕红香, 张琦, 吕佩源. Theta爆发式经颅磁刺激治疗失语症的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 306-311.
[10] 谢浩文, 丁建英, 刘小霞, 冯毅, 姚婧. 椎旁神经阻滞对微创胃切除肥胖患者术中血流、术后应激及康复质量的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 569-573.
[11] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[12] 刘芳明, 石秀秀, 唐冲, 张克石, 徐影, 王桂杉, 关振鹏, 李晓. 骨科康复患者对数字疗法应用的知晓度和需求度:一项基于928 份问卷调查结果分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 654-661.
[13] 李璇, 邓岚, 郭微, 邓永梅, 刘杰昕. 标准化皮肤管理流程在防治脑卒中患者失禁相关性皮炎中的应用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 479-482.
[14] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[15] 王丽娜, 吕书霞, 李亚男. 脑卒中偏瘫患者健康焦虑元认知与疾病接受度、恐惧疾病进展的相关性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 434-440.
阅读次数
全文


摘要