切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (05) : 281 -287. doi: 10.3877/cma.j.issn.2095-123X.2025.05.005

临床研究

病毒性脑炎患儿血清NfL、MIP-1α、LRG1与神经系统后遗症的关系分析
聂沈琴, 郝亚楠, 孙婕, 高貂艳()   
  1. 719000 陕西榆林,西安交通大学第一附属医院榆林医院儿科
  • 收稿日期:2024-12-25 出版日期:2025-10-15
  • 通信作者: 高貂艳

Analysis of the relationship between serum NfL, MIP-1α, LRG1 and neurological sequelae in children with viral encephalitis

Shenqin Nie, Yanan Hao, Jie Sun, Diaoyan Gao()   

  1. Department of Pediatrics, Yulin Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Yulin 719000, China
  • Received:2024-12-25 Published:2025-10-15
  • Corresponding author: Diaoyan Gao
  • Supported by:
    Project of the Medical and Health Technology Development Research Center of the National Health Commission(W2023ZT630)
引用本文:

聂沈琴, 郝亚楠, 孙婕, 高貂艳. 病毒性脑炎患儿血清NfL、MIP-1α、LRG1与神经系统后遗症的关系分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 281-287.

Shenqin Nie, Yanan Hao, Jie Sun, Diaoyan Gao. Analysis of the relationship between serum NfL, MIP-1α, LRG1 and neurological sequelae in children with viral encephalitis[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(05): 281-287.

目的

分析病毒性脑炎(VE)患儿血清神经丝轻链蛋白(NfL)、巨噬细胞炎性蛋白-1α(MIP-1α)、富亮氨酸α-2糖蛋白1(LRG1)与神经系统后遗症的关系。

方法

选取西安交通大学第一附属医院榆林医院儿科自2020年2月至2023年1月收治的150例VE患儿为研究对象。随访6个月,根据VE患儿是否发生神经系统后遗症分为后遗症组和非后遗症组。比较2组患儿的基线资料及血清NfL、MIP-1α、LRG1水平,采用多因素Logistic回归法分析导致神经系统后遗症的影响因素,并采用受试者工作特征(ROC)曲线分析血清NfL、MIP-1α、LRG1预测神经系统后遗症发生的临床价值。

结果

后遗症组患儿血清NfL、MIP-1α、LRG1水平高于非后遗症组,差异均有统计学意义(P<0.05);后遗症组中惊厥持续状态、谷丙转氨酶>40 U/L患儿占比高于非后遗症组,PCIS评分低于非后遗症组,且2组患儿的颅脑MRI分级、脑电图异常情况分布比较,差异均有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,惊厥持续状态和血清NfL、MIP-1α、LRG1是导致VE患儿发生神经系统后遗症的独立影响因素(P<0.05)。ROC曲线分析显示,血清NfL、MIP-1α、LRG1单独和联合预测神经系统后遗症的曲线下面积分别为0.766、0.778、0.807和0.888,联合预测较单独预测的效能明显提升(P<0.05)。

结论

VE患儿血清NfL、MIP-1α、LRG1水平异常升高,且血清NfL、MIP-1α、LRG1联合检测有助于辅助神经系统后遗症的评估。

Objective

To analyze the relationship between serum neurofilament light chain protein (NfL), macrophage inflammatory protein-1α (MIP-1α), leucine-rich α-2 glycoprotein 1 (LRG1) and neurological sequelae in children with viral encephalitis (VE).

Methods

One hundred and fifty VE children admitted to Pediatrics Department of Yulin Hospital, First Affiliated Hospital of Xi'an Jiaotong University from February 2020 to January 2023 were selected. After 6 months of follow-up, VE children were divided into sequelae group and non-sequelae group according to whether neurological sequelae occurred or not. Baseline data and the levels of serum NfL, MIP-1α, LRG1 of the two groups of children were compared. The related factors leading to neurological sequelae were analyzed by multivariate Logistic regression analysis, and the clinical value of serum NfL, MIP-1α, LRG1 alone and in combination in predicting neurological sequelae were analyzed by receiver operating characteristic (ROC) curve.

Results

The levels of serum NfL, MIP-1α, LRG1 in sequelae group were higher than those in non-sequelae group (P<0.05). The proportion of children with status epilepticus and alanine aminotransferase >40 U/L in the sequelae group was higher than that in the non-sequelae group, and the PCIS score was lower than that in the non-sequelae group (P<0.05). Moreover, there were statistically significant differences in the distribution of cranial MRI grades and abnormal electroencephalogram conditions between the two groups (P<0.05). Multivariate Logistic regression analysis showed that, status convulsion, serum NfL, MIP-1α and LRG1 were independent influencing factors for neurological sequelae in VE children (P<0.05). ROC curve analysis showed that, the area under the curve (AUC) of serum NfL, MIP-1α and LRG1 alone in predicting neurological sequelae was 0.766, 0.778 and 0.807 respectively, the AUC of combined detection was 0.888, which was significantly higher than that of single detection (P<0.05).

Conclusions

The levels of serum NfL, MIP-1α and LRG1 in VE children are abnormally increase, and the combine detection of serum NfL, MIP-1α and LRG1 is helpful to assist the evaluation of neurological sequelae.

表1 2组病毒性脑炎患儿的基线资料比较
Tab.1 Comparison of baseline data between two groups of children with viral encephalitis
项目 后遗症组(n=37) 非后遗症组(n=113) t/χ2/Z P
性别[例(%)]     0.150 0.698
21(56.76) 60(53.10)    
16(43.24) 53(46.90)    
年龄[例(%)]     1.309 0.253
>6岁 25(67.57) 87(76.99)    
≤6岁 12(32.43) 26(23.01)    
发病至入院时间(d,mean±SD 2.20±0.44 2.05±0.41 1.897 0.060
主要症状[例(%)]        
持续高热 33(89.19) 95(84.07) 0.583 0.445
意识障碍 20(54.05) 47(41.59) 1.751 0.186
惊厥持续状态 23(62.16) 29(25.66) 16.394 <0.001
频繁抽搐状态(≥3次) 19(51.35) 41(36.28) 2.637 0.105
精神行为异常 20(54.05) 42(37.17) 2.860 0.091
巴氏征阳性 25(67.57) 68(60.18) 0.646 0.421
脑膜刺激征阳性 14(37.84) 38(33.63) 0.218 0.641
偏瘫 14(37.84) 26(23.01) 3.134 0.077
颅脑MRI分级[例(%)]     2.175 0.030
1级 19(51.35) 77(68.14)    
2级 8(21.62) 22(19.47)    
3级 7(18.92) 14(12.39)    
4级 3(8.11) 0(0.00)    
脑电图异常分级[例(%)]     4.203 <0.001
正常 3(8.11) 32(28.32)    
轻度 10(27.05) 51(45.13)    
中度 19(51.35) 26(23.01)    
重度 5(13.51) 4(3.54)    
小儿危重病例评分(分,mean±SD 72.40±8.54 88.92±5.21 14.096 <0.001
脑脊液有核细胞数(×106/L,mean±SD 108.11±65.22 132.40±84.06 1.605 0.111
脑脊液蛋白质含量>400 mg/L[例(%)] 22(59.46) 52(46.02) 2.015 0.156
C反应蛋白>8 mg/L[例(%)] 25(67.57) 61(53.98) 2.103 0.147
谷丙转氨酶>40 U/L[例(%)] 17(45.95) 23(20.35) 9.335 0.002
肌酸激酶同工酶>24 U/L[例(%)] 16(43.24) 40(35.40) 0.733 0.392
乳酸脱氢酶>245 U/L[例(%)] 25(67.57) 62(54.87) 1.846 0.174
表2 2组病毒性脑炎患儿血清NfL、MIP-1α、LRG1水平比较(mean±SD
Tab.2 Comparison of serum NfL, MIP-1α and LRG1 levels between two groups of children with viral encephalitis (mean±SD)
表3 多因素Logistic回归分析病毒性脑炎患儿发生神经系统后遗症的相关因素
Tab.3 Multivariate Logistic regression analysis of the related factors of neurological sequelae in children with viral encephalitis
图1 血清NfL、MIP-1α、LRG1预测神经系统后遗症的ROC曲线NfL:神经丝轻链蛋白;MIP-1α:巨噬细胞炎性蛋白-1α;LRG1:富亮氨酸α-2糖蛋白1;ROC:受试者工作特征
Fig.1 ROC curves of serum NfL, MIP-1α and LRG1 for predicting neurological sequelae
表4 血清NfL、MIP-1α、LRG1对神经系统后遗症的预测价值
Tab.4 Predictive value of serum NfL, MIP-1α and LRG1 for neurological sequelae
[1]
王雨薇,郭爱松,蔡俊燕,等.病毒性脑炎发病机制的研究进展[J].中国实用神经疾病杂志, 2019, 22(17): 1966-1972. DOI: 10.12083/SYSJ.2019.17.329.
[2]
Chen JH, Wu J, Yang XY, et al. Diagnostic value of the electroencephalogram and cerebrospinal fluid in viral encephalitis[J]. Neurologist, 2022, 27(5): 225-229. DOI: 10.1097/NRL.0000000000000395.
[3]
Liang XZ, Feng SY. Serum neurofilament light chain for predicting delayed neurological sequelae after acute carbon monoxide poisoning[J]. Acta Neurol Belg, 2024, 124(1): 73-79. DOI: 10.1007/s13760-023-02334-7.
[4]
Spagnolo-Allende A, Schnall R, Liu M, et al. Serum inflammation markers associated with altered brain white matter microstructure in people with HIV on antiretroviral treatment[J]. Neurol Sci, 2023, 44(6): 2159-2166. DOI: 10.1007/s10072-023-06613-2.
[5]
Talukder K, Prasad R, Abhinay A, et al. Cerebrospinal fluid leucine-rich alpha-2 glycoprotein (LRG) levels in children with acute bacterial meningitis[J]. Indian J Pediatr, 2022, 89(2): 192-194. DOI: 10.1007/s12098-021-03972-6.
[6]
江载芳,申昆玲,沈颖.诸福棠实用儿科学[M]. 8版.北京:人民卫生出版社, 2015:1202-1204.
[7]
洪莲,任鸿萍,刘华,等.病毒性脑炎患者头部MRI影像学特点及其对预后的诊断价值[J].检验医学与临床, 2017, 14(16): 2361-2363. DOI: 10.3969/j.issn.1672-9455.2017.16.011.
[8]
刘晓燕.临床脑电图学[M]. 2版.北京:人民卫生出版社, 2017: 26-27.
[9]
张丽丹,黄慧敏,程玉才,等. 4种小儿危重死亡评分对危重患儿死亡风险的预测价值[J].中华危重病急救医学, 2018, 30(1): 51-56. DOI: 10.3760/cma.j.issn.2095-4352.2018.01.010.
[10]
Ai J, Xie Z, Liu G, et al. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study[J]. BMC Infect Dis, 2017, 17(1): 494. DOI: 10.1186/s12879-017-2572-9.
[11]
Bohmwald K, Andrade CA, Gálvez NMS, et al. The causes and long-term consequences of viral encephalitis[J]. Front Cell Neurosci, 2021, 15: 755875. DOI: 10.3389/fncel.2021.755875.
[12]
Autore G, Bernardi L, Perrone S, et al. Update on viral infections involving the central nervous system in pediatric patients[J]. Children (Basel), 2021, 8(9): 782. DOI: 10.3390/children8090782.
[13]
宋婕,王祎琳,褚佳琪.病毒性脑炎患儿脑脊液和血清中SIL-2R、eNOS、CD93水平与疾病进展及预后的关系[J].中国当代儿科杂志, 2024, 26(10): 1072-1077. DOI: 10.7499/j.issn.1008-8830.2405043.
[14]
顾海红,王培养,顾承萍,等.病毒性脑炎患儿血清microRNA-125b与病情严重程度及预后的关系[J].中国现代医学杂志, 2022, 32(8): 15-19. DOI: 10.3969/j.issn.1005-8982.2022.08.004.
[15]
王冬至,郑光辉,邵春青,等.脑脊液指标在自身免疫性脑炎和病毒性脑炎鉴别诊断中的价值[J].标记免疫分析与临床, 2023, 30(2): 186-190, 222. DOI: 10.11748/bjmy.issn.1006-1703.2023.02.002.
[16]
Abu-Rumeileh S, Abdelhak A, Foschi M, et al. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases[J]. Brain, 2023, 146(2): 421-437. DOI: 10.1093/brain/awac328.
[17]
van Zeggeren IE, Ter Horst L, Heijst H, et al. Neurofilament light chain in central nervous system infections: a prospective study of diagnostic accuracy[J]. Sci Rep, 2022, 12(1): 14140. DOI: 10.1038/s41598-022-17643-9.
[18]
Li M, Jiang H, Gu K, et al. Lidocaine Alleviates neuropathic pain and neuroinflammation by inhibiting HMGB1 expression to mediate MIP-1α/CCR1 pathway[J]. J Neuroimmune Pharmacol, 2021, 16(2): 318-333. DOI: 10.1007/s11481-020-09913-y.
[19]
Almeida RS, Ferreira MLB, Sonon P, et al. Cytokines and soluble HLA-G levels in the acute and recovery phases of arbovirus-infected brazilian patients exhibiting neurological complications[J]. Front Immunol, 2021, 12: 582935. DOI: 10.3389/fimmu.2021.582935.
[20]
Seyfried KS, Kremer B, Conzen-Dilger C, et al. Mapping inflammatory markers in cerebrospinal fluid following aneurysmal subarachnoid hemorrhage: an age- and sex-matched analysis[J]. Int J Mol Sci, 2025, 26(3): 1302. DOI: 10.3390/ijms26031302.
[21]
Camilli C, Hoeh AE, De Rossi G, et al. LRG1: an emerging player in disease pathogenesis[J]. J Biomed Sci, 2022, 29(1): 6. DOI: 10.1186/s12929-022-00790-6.
[22]
李海英,魏烁瑾,王怀立,等.亮氨酸的a-2-糖蛋白-1、可溶性白细胞分化抗原14亚型及降钙素原在细菌性脑膜炎及病毒性脑炎诊治中的作用[J].中国临床医生杂志, 2022, 50(6): 724-727. DOI: 10.3969/j.issn.2095-8552.2022.06.027.
[23]
Chong PF, Sakai Y, Torisu H, et al. Leucine-rich alpha-2 glycoprotein in the cerebrospinal fluid is a potential inflammatory biomarker for meningitis[J]. J Neurol Sci, 2018, 392(9): 51-55. DOI: 10.1016/j.jns.2018.07.006.
[24]
Nicoletti TF, Rossi S, Vita MG, et al. Elevated serum neurofilament light chain (NfL) as a potential biomarker of neurological involvement in myotonic dystrophy type 1 (DM1)[J]. J Neurol, 2022, 269(9): 5085-5092. DOI: 10.1007/s00415-022-11165-0.
[25]
Jarvis JN, Meintjes G, Bicanic T, et al. Cerebrospinal fluid cytokine profiles predict risk of early mortality and immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis[J]. PLoS Pathog, 2015, 11(4): e1004754. DOI: 10.1371/journal.ppat.1004754.
[26]
Miao Y, Wang M, Cai X, et al. Leucine rich alpha-2-glycoprotein 1 (Lrg1) silencing protects against sepsis-mediated brain injury by inhibiting transforming growth factor beta1 (TGFβ1)/SMAD signaling pathway[J]. Bioengineered, 2022, 13(3): 7316-7327. DOI: 10.1080/21655979.2022.2048775.
[27]
Alsina FC, Hita FJ, Fontanet PA, et al. Lrig1 is a cell-intrinsic modulator of hippocampal dendrite complexity and BDNF signaling[J]. EMBO Rep, 2016, 17(4): 601-616. DOI: 10.15252/embr.201541218.
[1] 高宗勋, 宋义琴, 唐卉, 魏艳红, 王杰英, 王刃, 雷淑琴, 张立红. 干扰素鞘内注射治疗病毒性脑炎的疗效及鞘内注射前后脑脊液中干扰素浓度的测定[J/OL]. 中华妇幼临床医学杂志(电子版), 2006, 02(01): 18-20.
[2] 林潘, 张燕红, 刘富英, 戚晓倩. 伴有精神障碍的病毒性脑炎患者的临床观察及护理[J/OL]. 中华实验和临床感染病杂志(电子版), 2016, 10(01): 125-126.
[3] 马苗苗, 次苗苗, 寇振宇, 王斌锋, 和建武. 儿童急性下呼吸道感染血清hBD-2、MIP-1α、IL-13 与病情严重程度的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1008-1012.
[4] 谭自明, 罗琼, 张美, 王君. 小儿病毒性脑炎并发肺部感染的病原菌及耐药性分析[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(03): 394-396.
[5] 张益帆, 耿晓东, 冀雨薇, 张可颖, 林淑芃, 蔡广研, 陈香美, 洪权. 富亮氨酸α-2糖蛋白1增强间充质干细胞对急性肾损伤的疗效研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(01): 16-25.
[6] 张元清, 杨婉莹, 朱健伟. 以急性脑梗死为首发表现的单纯疱疹病毒性脑炎一例报道[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 187-190.
[7] 刘丹丹, 孙美珍. 细胞因子在病毒性脑炎后癫痫发作中的作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2017, 07(01): 40-42.
[8] 刘丹丹, 孙美珍, 赵俊萍. 血清及脑脊液中白介素-1β、白介素-6及肿瘤坏死因子-α水平与病毒性脑炎急性期伴癫痫发作的关系[J/OL]. 中华临床医师杂志(电子版), 2017, 11(16): 2120-2124.
[9] 冯美娜, 杜远敏, 涂文仙. 病毒性脑炎痫性发作演变为脑炎后癫痫的临床影响因素分析[J/OL]. 中华脑血管病杂志(电子版), 2021, 15(05): 314-318.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?