切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2019, Vol. 09 ›› Issue (06) : 350 -354. doi: 10.3877/cma.j.issn.2095-123X.2019.06.007

所属专题: 文献

临床研究

高血压脑出血术后慢性脑积水的危险因素及预测指标分析
胡海成1,(), 王如海1   
  1. 1. 236063 阜阳市第五人民医院神经外科
  • 收稿日期:2019-12-01 出版日期:2019-12-15
  • 通信作者: 胡海成

Analysis of risk factors and predictive value for chronic hydrocephalus following operation on hypertensive intracerebral hemorrhage

Haicheng Hu1,(), Ruhai Wang1   

  1. 1. Department of Neurosurgery, Fuyang Fifth People’s Hospital, Fuyang 236063, China
  • Received:2019-12-01 Published:2019-12-15
  • Corresponding author: Haicheng Hu
  • About author:
    Corresponding author: Hu Haicheng, Email:
引用本文:

胡海成, 王如海. 高血压脑出血术后慢性脑积水的危险因素及预测指标分析[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(06): 350-354.

Haicheng Hu, Ruhai Wang. Analysis of risk factors and predictive value for chronic hydrocephalus following operation on hypertensive intracerebral hemorrhage[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2019, 09(06): 350-354.

目的

探讨高血压脑出血(HICH)术后形成慢性脑积水(HCP)的危险因素及对HCP形成的预测价值。

方法

选择2015年1月至2019年6月阜阳市第五人民医院神经外科收治的223例HICH患者作为研究对象,收集临床资料,随访患者出院后3个月内HCP形成情况,分析慢性HCP的危险因素,采用受试者特征工作曲线(ROC)分析不同指标对慢性HCP的预测价值,以约登指数最大值确定截点值。

结果

223例患者形成HCP者49例(22.0%);HCP组脑疝比例、改良Graeb量表(mGS)评分、术前梗阻性HCP比例均高于非HCP组(P<0.05),GCS评分低于非HCP组(P<0.05),未行腰椎穿刺的患者HCP发生率高于行腰椎穿刺(P<0.05)。Logistic多因素分析示,脑疝、mGS评分为患者慢性HCP的独立影响因素(P<0.05),早期腰椎穿刺为其保护因素(P<0.05)。ROC曲线示,脑疝、mGS评分预测患者术后形成慢性HCP的曲线下面积(AUC)分别为0.646、0.821,两者联合预测慢性HCP的AUC为0.857。

结论

脑疝、mGS评分为HICH术后慢性HCP的独立影响因素,而术后早期释放脑脊液可减少慢性HCP的发生。脑疝、mGS评分指标联合应用可更好地预测慢性HCP的形成。

Objective

To investigate risk factors and predictive value for chronic hydrocephalus (HCP) following operation on hypertensive intracerebral hemorrhage (HICH).

Methods

Clinical data of 233 patients with HICH admitted to the hospital from January 2015 to June 2019 were retrospectively analyzed. Patients with chronic HCP were followed up within 3 months after discharge. Multiple logistic regression was performed to analyze risk factors of chronic HCP, and receiver operating characteristic (ROC) curve was used to assess the predictive value of indicators for chronic HCP. The maximum value of the Jordon index determines the cut-off value.

Results

Among the 233 patients with HICH, 49 cases (22.0%) developed chronic HCP. The proportion of cerebral hernia, modified Graeb scale (mGS) score and preoperative obstructive HCP in the HCP group was higher than that in the non-HCP group (P<0.05), and score of GCS was lower than that in the non-HCP group (P<0.05). The incidence of chronic HCP in patients without lumbar puncture was higher than that in patients with lumbar puncture (P<0.05). Multiple logistic regression analysis showed that cerebral hernia and mGS were the independent influencing factors associated with chronic HCP (P<0.05). However, lumbar puncture is a protective factor for chronic HCP in HICH patients (P<0.05). ROC curve showed that the area under the curve (AUC) of cerebral hernia and mGS, predicting chronic HCP was 0.646 and 0.821, respectively. Combined prediction of the two risk factors had an AUC of 0.857.

Conclusion

Cerebral hernia and mGS score are independent influencing factors for chronic HCP after HICH, and early release of cerebrospinal fluid after operation can reduce the occurrence of chronic HCP. The combination of the indicators can better predict the formation of chronic HCP.

表1 脑室改良Graeb量表评分具体评分方法
表2 2组高血压脑出血患者临床资料比较
表3 高血压脑出血术后慢性脑积水的单因素分析
表4 高血压脑出血术后患者慢性脑积水的多因素分析
图1 指标对高血压脑出血术后患者慢性脑积水的受试者特征工作曲线
表5 指标对高血压脑出血术后患者慢性脑积水的预测价值
[1]
Gross BA, Jankowitz BT, Friedlander RM. Cerebral intraparenchymal hemorrhage: a review[J]. JAMA, 2019, 321(13): 1295-1303.
[2]
de Oliveira Manoel AL. Surgery for spontaneous intracerebral hemorrhage[J]. Crit Care, 2020, 24(1): 45.
[3]
Carlsson M, Wilsgaard T, Johnsen SH, et al. Temporal trends in incidence and case fatality of intracerebral hemorrhage: The Troms Study 1995-2012[J]. Cerebrovasc Dis Extra, 2016, 6(2): 40-49.
[4]
Matz O, Arndt A, Litmathe J, et al. Risk factors for hypertensive and cerebral amyloid angiopathy associated intracerebral hemorrhage: a retrospective comparison[J]. Fortschr Neurol Psychiatr, 2018, 86(12): 763-769.
[5]
Mustanoja S, Satopää J, Meretoja A, et al. Extent of secondary intraventricular hemorrhage is an independent predictor of outcomes in intracerebral hemorrhage: data from the Helsinki ICH Study[J]. Int J Stroke, 2015, 10(4): 576-581.
[6]
Greenberg JK, Washington CW, Guniganti R, et al. Causes of 30-day readmission after aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2016, 124(3): 743-749.
[7]
Paisan GM, Ding D, Starke RM, et al. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: predictors and long-term functional outcomes[J]. Neurosurgery, 2018, 83(3): 393-402.
[8]
Zaidi HA, Montoure A, Elhadi A, et al. Long-term functional outcomes and predictors of shunt-dependent hydrocephalus after treatment of ruptured intracranial aneurysms in the BRAT trial: revisiting the clip vs coil debate[J]. Neurosurgery, 2015, 76(5): 608-614.
[9]
Vedantam A, Yamal JM, Hwang H, et al. Factors associated with shunt-dependent hydrocephalus after decompressive craniectomy for traumatic brain injury[J]. J Neurosurg, 2018, 128(5): 1547-1552.
[10]
Chen Q, Feng Z, Tan Q, et al. Post-hemorrhagic hydrocephalus: Recent advances and new therapeutic insights[J]. J Neurol Sci, 2017, 375: 220-230.
[11]
Koschnitzky JE, Keep RF, Limbrick DD Jr, et al. Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop[J]. Fluids and barriers of the CNS, 2018, 15(1): 11.
[12]
Morgan TC, Dawson J, Spengler D, et al. The Modified Graeb Score: an enhanced tool for intraventricular hemorrhage measurement and prediction of functional outcome[J]. Stroke, 2013, 44(3): 635-641.
[13]
Hughes JD, Puffer R, Rabinstein AA. Risk factors for hydrocephalus requiring external ventricular drainage in patients with intraventricular hemorrhage[J]. J Neurosurg, 2015, 123(6): 1439-1446.
[14]
Liliang PC, Liang CL, Lu CH, et al. Hypertensive caudate hemorrhage prognostic predictor, outcome, and role of external ventricular drainage[J]. Stroke, 2001, 32(5): 1195-1200.
[15]
Vermeij FH, Hasan D, Vermeulen M, et al. Predictive factors for deterioration from hydrocephalus after subarachnoid hemorrhage[J]. Neurology, 1994, 44(10): 1851-1855.
[16]
AlShardan MM, Mubasher M, Orz Y, et al. Factors that predict hydrocephalus following intraventricular hemorrhage[J]. Br J Neurosurg, 2015, 29(2): 225-228.
[17]
Kuo LT, Lu HY, Tsai JC, et al. Prediction of shunt dependency after intracerebral hemorrhage and intraventricular hemorrhage[J]. Neurocrit Care, 2018, 29(2): 233-240.
[18]
Relkin N, Marmarou A, Klinge P, et al. Diagnosing idiopathic normal-pressure hydrocephalus[J]. Neurosurgery, 2005, 57(3 Suppl): S4-S16; discussion ii-v.
[19]
Graeb DA, Robertson WD, Lapointe JS, et al. Computed tomographic diagnosis of intraventricular hemorrhage. Etiology and prognosis[J]. Radiology, 1982, 143(1): 91-96.
[20]
Cherian S, Whitelaw A, Thoresen M, et al. The pathogenesis of neonatal post-hemorrhagic hydrocephalus[J]. Brain Pathol, 2004, 14(3): 305-311.
[21]
Suzuki H, Kinoshita N, Imanaka-Yoshida K, et al. Cerebrospinal fluid tenascin-C increases preceding the development of chronic shunt-dependent hydrocephalus after subarachnoid hemorrhage[J]. Stroke, 2008, 39(5): 1610-1612.
[22]
赵朝辉,龙连圣,辛志成,等.颅脑损伤术后脑积水危险因素的探讨[J].创伤外科杂志, 2012, 14(5): 413-416.
[23]
李军,管义祥,王海波,等.颅脑外伤后慢性脑积水的相关危险因素Logistic回归分析[J].交通医学, 2016, 30(5): 456-457.
[24]
Chen Q, Tang J, Tan L, et al. Intracerebral hematoma contributes to hydrocephalus after intraventricular hemorrhage via aggravating iron accumulation[J]. Stroke, 2015, 46(10): 2902-2908.
[25]
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012, 11(8): 720-731.
[26]
Garton T, Keep RF, Wilkinson DA, et al. Intraventricular hemorrhage: the role of blood components in secondary injury and hydrocephalus[J]. Transl Stroke Res, 2016, 7(6): 447-451.
[27]
Whitelaw A, Jary S, Kmita G, et al. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years[J]. Pediatrics, 2010, 125(4): e852-e858.
[1] 许少年, 张永明, 黄振山, 丁俊, 姜国伟, 钱峰, 张连富. 机器人辅助下立体定向微创穿刺抽吸及引流术治疗高血压脑出血的临床疗效分析[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 76-80.
[2] 张永明, 马奎, 余浩, 邓鹏程, 许少年. 神经外科机器人引导下精准穿刺治疗脑内亚急性小血肿[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 127-128.
[3] 王如海, 胡海成, 韩超, 于强, 黄好峰. 单侧慢性硬膜下血肿患者术后复发的预测因素分析[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 359-363.
[4] 王晓毅, 黄海林, 成刚. 内镜下颅内血肿清除术与开颅血肿清除术在高血压脑出血中治疗的比较[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 283-286.
[5] 杨利辉, 贾亚男, 闫建敏, 张颜礼, 高海晓, 冯国强. 3D-slicer辅助神经内镜治疗不同时期基底节区脑出血的研究[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 275-278.
[6] 魏志鹏, 兰彦平, 马毅哲, 王邦向, 高阳. 3D-Slicer软件定位技术在脑内血肿穿刺引流术中的临床应用[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 224-228.
[7] 吴昊, 李云雷, 麦麦提力·米吉提, 买吾兰·艾沙, 陈烈兴, 马木提江·木尔提扎, 巴特·龚高昂, 朱国华. 颅内压监测在治疗非脑疝高血压脑出血中的应用及疗效分析[J]. 中华神经创伤外科电子杂志, 2020, 06(03): 151-155.
[8] 王佳, 邓永兵, 胡晞, 邹胜伟. 快速颅内压监测联合血肿穿刺在严重高血压脑出血患者术前应用的临床研究[J]. 中华神经创伤外科电子杂志, 2020, 06(02): 100-104.
[9] 刘皇勇, 许民辉. 不同血压控制水平对少量高血压脑出血患者再出血及预后的影响[J]. 中华神经创伤外科电子杂志, 2020, 06(01): 15-18.
[10] 武孝刚, 刘家传, 王金标, 袁杰, 张永明. 小骨窗联合Viewsite脑牵开器显微手术治疗高血压脑出血的疗效研究[J]. 中华神经创伤外科电子杂志, 2019, 05(03): 150-154.
[11] 姚瀚勋, 苏忠周, 周跃, 李晓斌, 沈亮, 徐杰. 新型颅脑穿刺定位器结合新型头颅CT定位贴片辅助软通道穿刺引流术治疗高血压脑出血[J]. 中华神经创伤外科电子杂志, 2019, 05(03): 140-145.
[12] 谷雪峰, 王晓虹. 高血压脑出血患者术后不同程度抑郁风险因素模型构建及验证[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(05): 316-320.
[13] 沈书廷, 马飞虎, 龙翔, 牧仁, 王建武, 钱磊, 刘俊鹏, 孟宪东, 张宗林. 高血压性脑出血分型及外科治疗方法选择的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(05): 309-315.
[14] 高文文, 王凤鹿, 蒋小兵, 王悦, 袁致海, 杨磊, 陈鹏, 李小强, 唐小璐, 赵海康. 扰动系数在脑出血患者脑水肿监测治疗中的作用[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(05): 305-308.
[15] 柴源, 刘卫平, 鲜盼盼, 罗强, 苗宇, 张胡金, 樊才瑞, 高建忠, 贾晨光, 刘阳, 宋孟龙, 张玉奇, 龙乾发. 低龄化高血压脑出血血脂水平的多中心研究[J]. 中华临床医师杂志(电子版), 2019, 13(08): 572-576.
阅读次数
全文


摘要