切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (01) : 1 -5. doi: 10.3877/cma.j.issn.2095-123X.2020.01.001

所属专题: 文献

述评

间充质干细胞治疗阿尔茨海默病的现状与展望
徐如祥1,(), 杨超2, 陈强2, 张洪钿1   
  1. 1. 610072 成都,电子科技大学附属医院(四川省人民医院)神经外科
    2. 610036 成都,四川新生命干细胞科技股份有限公司
  • 收稿日期:2020-01-22 出版日期:2020-02-15
  • 通信作者: 徐如祥

Current situation and Prospect of mesenchymal stem cell therapy for Alzheimer's disease

Ruxiang Xu1(), Chao Yang2, Qiang Chen2   

  • Received:2020-01-22 Published:2020-02-15
  • Corresponding author: Ruxiang Xu
引用本文:

徐如祥, 杨超, 陈强, 张洪钿. 间充质干细胞治疗阿尔茨海默病的现状与展望[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(01): 1-5.

Ruxiang Xu, Chao Yang, Qiang Chen. Current situation and Prospect of mesenchymal stem cell therapy for Alzheimer's disease[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(01): 1-5.

阿尔茨海默病(AD)属于神经退行性疾病,临床表现特征是记忆障碍、失语、失用、失认及视空间技能损害,执行功能障碍以及人格和行为改变。AD病理损害的主要表现为基底节区的胆碱能神经细胞广泛死亡,乙酰胆碱化酶和乙酰胆碱含量显著减少,脑中广泛的神经纤维缠结及β-淀粉样蛋白过度积累等。常规药物及康复治疗对AD的疗效甚微,采用神经干细胞移植治疗是全球聚焦的热点和前沿创新治疗技术。神经干细胞通过旁分泌免疫调节因子抑制炎症反应,降低炎性因子的释放,减小β-淀粉样蛋白形成;也可通过分泌神经营养因子,营养和保护胆碱能神经元。神经干细胞分化为神经元,替代受损的神经细胞,重建认知神经环路和脑网络。

表1 干细胞治疗阿尔茨海默病的12项临床试验项目
序号 状态 项目名称 条件 干预措施 地点
1 Active, not recruiting A Clinical Trial to Determine the Safety and Efficacy of Hope Biosciences Autologous Mesenchymal Stem Cell Therapy (HB - adMSCs) for the Treatment of Alzheimer ’s Disease Alzheimer Disease Drug: HB-adMSCs Clinical Trial Network Houston, Texas, United States
2 Active, not recruiting Allogeneic Human Mesenchymal Stem Cell Infusion Versus Placebo in Patients With Alzheimer ’ s Disease Alzheimer Disease Biological: Longeveron Mesenchymal Stem Cells; Biological Placebo Brain Matters Research Delray Beach, Florida, United States; University of Miami Miller School of Midicine Miami, Florida, United States; Miami Jewish Health Miami, Florida, United States
3 Recruiting Allogeneic Human Mesenchymal Stem Cells for Alzheimer ’ s Disease Alzheimer Dementia Drug: Human Mesenchymal Stem Cells and Lactated Riunger ’s Solution; Other: Placebo John Wayne Cancer Institute@ Providence St John ’ s Health Center Santa Monica, California, United States
4 Unknown Safety and Efficiency of Umbilical Cord - derived Mesenchymal Stem Cells(UC - MSC) in Patients With Alzheimer ’s Disease Alzheimer Disease Biological:Human Umbilical Cord Derived MSC Department of Hematopoietic Stem Cell Transplantation Beijing, China
5 Recruiting Alzheimer ’s Disease Stem Cells Multiple Infusions Alzheimer Disease Biological: 100 million cells allogeneic hMSC University of Miami Miami, Florida, United States
6 Unknown Safety and Exploratory Efficacy Study of UCMSCs in Patients With Alzheimer ’s Disease Alzheimer Disease Biological: UCMSCs Biological: Placebo South China Research Center for StemCell and Regenerative Medicine, South China Institute of Biomedicine Guangzhou, Guangdong, China
7 Not yet recruiting The Safety and the Efficacy Evaluation of Allogenic Adipose MSC - Exos in Patients With Alzheimer ’s Disease Alzheimer Disease Biological: low dosage MSCs - Exos administrated for nasal drip Dosage Biological: mild dosage MSCs - Exos administrated for nasal drip Dosage Biological: high dosage MSCs - Exos administrated for nasal drip Dosage
9 Recruiting Evaluation of the Safety and Potential Therapeutic Effects Ater Intravenous Transplantation of CB - AC-02 in Patients With Alzheimer ’ s Disease Alzheimer Disease Biological: CB-AC-02 Biological: Placebo Bundang Medical Center Seongnam - si, Gyeonggi - do, South Korea
10 Completed The Safety and The Efficacy Evaluation of NEUROSTEM ? - AD in Patients With Alzheimer ’ s Disease Dementia of the Alzheimer ’s Type Biological:Human Umbilical Cord Blood Derived -Mesenchymal Stem Cells Samsung Medical Center Seoul, South Korea
11 Recruiting Safety and Exploratory Efficacy Study of NEUROSTEM ? - AD Versus Placebo in Patients With Alzheimer ’s Disease Alzheimer Disease Biological:human umbilical cordblood derived mesenchymal stem cells Other:Normal saline 2 mL Samsung Medical Center Seoul, South Korea
12 Unknown The Long-Term Safety and Efficacy Follow - Up Study of Subjects Who Completed the Phase I Clinical Trial of NEUROSTEM?-AD Alzheimer Disease Dementia Brain Diseases (and 6 more...) Biological: NEUROSTEM?- AD Samsung Medical Center Seoul, South Korea
[1]
Duncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy[J]. Stem Cell Res Ther, 2017, 8(1): 111.
[2]
Kandimalla R, Reddy PH. Therapeutics of neurotransmitters in Alzheimer’s disease[J]. J Alzheimers Dis, 2017, 57(4): 1049-1069.
[3]
Hunsberger JG, Rao M, Kurtzberg J, et al. Accelerating stem cell trials for Alzheimer’s disease[J]. Lancet Neurol, 2016, 15(2): 219-230.
[4]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, et al. Alzheimer’s disease: targeting the cholinergic system[J]. Curr Neuropharmacol, 2016, 14(1): 101-115.
[5]
Li K, Wei S, Liu Z, et al. The prevalence of Alzheimer’s disease in China: a systematic review and meta-analysis[J]. Iran J Public Health, 2018, 47(11): 1615-1626.
[6]
徐如祥.阿尔茨海默病的分子机制与神经干细胞移植治疗[J].老年医学与保健, 2004, 10(3): 177-180.
[7]
Gao M, Yao H, Dong Q, et al. Tumourigenicity and immunogenicity of induced neural stem cell grafts versus induced pluripotent stem cell grafts in syngeneic mouse brain[J]. Sci Rep, 2016, 6: 29955.
[8]
Gao M, Dong Q, Yao H, et al. Induced neural stem cells modulate microglia activation states via CXCL12/CXCR4 signaling[J]. Brain Behav Immun, 2017, 59: 288-299.
[9]
Furno DL, Mannino G, Giuffrida R. Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases[J]. J Cell Physiol, 2018, 233(5): 3982-3999.
[10]
Boutajangout A, Noorwali A, Atta H, et al. Human umbilical cord stem cell xenografts improve cognitive decline and reduce the amyloid burden in a mouse model of Alzheimer’s disease[J]. Curr Alzheimer Res, 2017, 14(1): 104-111.
[11]
Yan Y, Ma T, Gong K, et al. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice[J]. Neural Regen Res, 2014, 9(8): 798-805.
[12]
Wang F, Jia Y, Liu J, et al. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer’s disease[J]. Cell Biol Int, 2017, 41(6): 639-650.
[13]
Qin C, Lu Y, Wang K, et al. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: a meta-analytic review on potential mechanisms[J]. Transl Neurodegener, 2020, 9(1): 20.
[14]
Gao M, Dong Q, Zhang H, et al. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation[J]. Exp Ther Med, 2017, 13(3): 885-890.
[15]
Gao M, Dong Q, Yao H, et al. Systemic administration of induced neural stem cells regulates complement activation in mouse closed head injury models[J]. Sci Rep, 2017, 7: 45989.
[16]
Gao M, Dong Q, Lu Y, et al. Induced neural stem cell-derived astrocytes modulate complement activation and mediate neuroprotection following closed head injury[J]. Cell Death Dis, 2018, 9(2): 101.
[17]
Gao M, Yao H, Dong Q, et al. Neurotrophy and immunomodulation of induced neural stem cell grafts in a mouse model of closed head injury[J]. Stem Cell Res, 2017, 23: 132-142.
[18]
Xie ZH, Liu Z, Zhang XR, et al. Wharton’s jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model[J]. Clin Exp Med, 2016, 16(1): 89-98.
[19]
Zheng XY, Wan QQ, Zheng CY, et al. Amniotic mesenchymal stem cells decrease Aβ deposition and improve memory in APP/PS1 transgenic mice[J]. Neurochem Res, 2017, 42(8): 2191-2207.
[20]
Kim S, Chang KA, Kim J, et al. The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice[J]. PLoS One, 2012, 7(9): e45757.
[21]
Parekkadan B, Milwid JM. Mesenchymal stem cells as therapeutics[J]. Annu Rev Biomed Eng, 2010, 12: 87-117.
[22]
Zhang G, Li Y, Reuss JL, et al. Stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke[J]. Stem Cells Transl Med, 2019, 8(10): 999-1007.
[23]
Zhang G, Cunningham M, Zhang H, et al. First human trial of stem cell transplantation in complex arrays for stroke patients using the intracerebral microinjection instrument[J]. Oper Neurosurg (Hagerstown), 2020, 18(5): 503-510.
[24]
Cunningham M, Azimi S, Zhang G. Intracerebral delivery in complex 3D arrays: the intracerebral microinjection instrument[J]. World Neurosurg, 2019, 127: e1172-e1175.
[25]
张新宇.神经干细胞移植治疗阿尔茨海默病研究现状[J].医学综述, 2011, 17(20): 3067-3070.
[26]
Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration[J]. PLoS Pathog, 2017, 13(12): e1006654.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[3] 郭莉丽, 高谋, 徐如祥. 脊髓损伤的治疗新进展[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 321-324.
[4] 张萌, 喻中华. 阿尔茨海默病患者血清脂联素、Lp-PLA2、IL-17的表达及与认知功能的相关性分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 358-363.
[5] 郭翃江, 符雪彩, 朱妍妍, 严之红, 王丽娜, 纪红. 基于影响因素的老年阿尔茨海默病认知功能障碍预测模型构建及电子化认知康复训练的应用价值[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 156-161.
[6] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[7] 周庆忠, 冯晓兰, 何萍, 张戈, 赵茂, 白永恒, 冯大雄. 封闭Notch信号影响神经干细胞分化的体外研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 579-587.
[8] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[9] 陆静, 钟为慧, 赵杰, 曾玲晖. 髓系细胞触发受体2在β淀粉样蛋白病理致阿尔茨海默病中的作用机制[J]. 中华老年病研究电子杂志, 2024, 11(01): 51-56.
[10] 赵晓晓, 邱嘉婷, 张懿姝, 张蓉, 张棚, 刘晓蕾. 丁苯酞在各类型认知障碍治疗中的应用研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 19-26.
[11] 曾德阳, 董贺千禧, 陶凉, 肖红艳, 曾燕, 鄢华. 中年心血管危险因素增加阿尔茨海默病相关痴呆的流行病学和机制研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 6-13.
[12] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
[13] 夏禹, 刘寒, 朱瑞. 阿尔茨海默病及相关认知障碍疾病与早老素2基因相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 290-293.
[14] 宋蕾, 吴寒, 侯双兴, 楼菁菁, 刘兴党. 关于阿尔茨海默病中视网膜和视神经及相关物质的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 351-355.
[15] 马晓瑭, 王艳, 李素青, 刘金花, 石雨萌, 潘群文. 富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 172-181.
阅读次数
全文


摘要