| [1] |
Wu S, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. DOI: 10.1016/S1474-4422(18)30500-3.
|
| [2] |
Powell MP, Verma N, Sorensen E, et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis[J]. Nat Med, 2023, 29(3): 689-699. DOI: 10.1038/s41591-022-02202-6.
|
| [3] |
World Health Organization. World health statistics 2018: monitoring health for the SDGs, sustainable development goals[M]. Geneva: World Health Organization, 2018.
|
| [4] |
|
| [5] |
Zhang T, Zhao J, Li X, et al. Chinese Stroke Association guidelines for clinical management of cerebrovascular disorders: executive summary and 2019 update of clinical management of stroke rehabilitation[J]. Stroke Vasc Neurol, 2020, 5(3): 250-259. DOI: 10.1136/svn-2019-000321.
|
| [6] |
Schmidt-Pogoda A, Bonberg N, Koecke MHM, et al. Why most acute stroke studies are positive in animals but not in patients: a systematic comparison of preclinical, early phase, and phase 3 clinical trials of neuroprotective agents[J]. Ann Neurol, 2020, 87(1): 40-51. DOI: 10.1002/ana.25643.
|
| [7] |
Cho KH, Hong MR, Song WK. Upper-limb robot-assisted therapy based on visual error augmentation in virtual reality for motor recovery and kinematics after chronic hemiparetic stroke: a feasibility study[J]. Healthcare (Basel), 2022: 10(7): 1186. DOI: 10.3390/healthcare10071186.
|
| [8] |
Feng J, Li T, Lyu M, et al. Reconstruction of paralyzed arm function in patients with hemiplegia through contralateral seventh cervical nerve cross transfer: a multicenter study and real-world practice guidance[J]. EClinicalMedicine, 2022, 43: 101258. DOI: 10.1016/j.eclinm.2021.101258.
|
| [9] |
|
| [10] |
|
| [11] |
Kikkert S, Pfyffer D, Verling M, et al. Finger somatotopy is preserved after tetraplegia but deteriorates over time[J]. Elife, 2021, 10: e67713. DOI: 10.7554/eLife.67713.
|
| [12] |
Benavides FD, Jo HJ, Lundell H, et al. Cortical and subcortical effects of transcutaneous spinal cord stimulation in humans with tetraplegia[J]. J Neurosci, 2020, 40(13): 2633-2643. DOI: 10.1523/jneurosci.2374-19.2020.
|
| [13] |
Alashram AR, Padua E, Raju M, et al. Transcutaneous spinal cord stimulation effects on spasticity in patients with spinal cord injury: a systematic review[J]. J Spinal Cord Med, 2023, 46(4): 582-589. DOI: 10.1080/10790268.2021.2000200.
|
| [14] |
International Organization for Standardization. ISO 14708-3:2017 Implants for surgery — Active implantable medical devices — Part 3: Implantable neurostimulators[S]. Geneva: ISO, 2017.
|
| [15] |
Allen JR, Karri SR, Yang C, et al. Spinal cord stimulation for poststroke hemiparesis: a scoping review[J]. Am J Occup Ther, 2024, 78(2): 7802180170. DOI: 10.5014/ajot.2024.050533.
|
| [16] |
|
| [17] |
|
| [18] |
Jiao J, Jensen W, Harreby KR, et al. The effect of spinal cord stimulation on epileptic seizures[J]. Neuromodulation, 2016, 19(2): 154-160. DOI: 10.1111/ner.12362.
|
| [19] |
Meseguer-Henarejos AB, Sánchez-Meca J, López-Pina JA, et al. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta-analysis[J]. Eur J Phys Rehabil Med, 2018, 54(4): 576-590. DOI: 10.23736/S1973-9087.17.04796-7.
|
| [20] |
Yuan X, Hu S, Fan X, et al. Central post-stroke pain: advances in clinical and preclinical research[J]. Stroke Vasc Neurol, 2025, 10(3): 391-406. DOI: 10.1136/svn-2024-003374.
|
| [21] |
Provenzano DA, Vaidya EA, Kilgore JS. Preoperative magnetic resonance imaging modifies percutaneous spinal cord stimulator trial progression and planning[J]. Neuromodulation, 2025, 28(2): 306-314. DOI: 10.1016/j.neurom.2024.10.005.
|
| [22] |
Rowald A, Komi S, Demesmaeker R, et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis[J]. Nat Med, 2022, 28(2): 260-271. DOI: 10.1038/s41591-021-01663-5.
|
| [23] |
Woodington BJ, Curto VF, Yu YL, et al. Electronics with shape actuation for minimally invasive spinal cord stimulation[J]. Sci Adv, 2021, 7(26): eabg7833. DOI: 10.1126/sciadv.abg7833.
|
| [24] |
Wan KR, Ng ZYV, Wee SK, et al. Recovery of volitional motor control and overground walking in participants with chronic clinically motor complete spinal cord injury: restoration of rehabilitative function with epidural spinal stimulation (RESTORES) trial-a preliminary study[J]. J Neurotrauma, 2024, 41(9-10): 1146-1162. DOI: 10.1089/neu.2023.0265.
|
| [25] |
|
| [26] |
Tanei T, Kajita Y, Takebayashi S, et al. Predictive factors associated with pain relief of spinal cord stimulation for central post-stroke pain[J]. Neurol Med Chir (Tokyo), 2019, 59(6): 213-221. DOI: 10.2176/nmc.oa.2018-0292.
|
| [27] |
Deer TR, Lamer TJ, Pope JE, et al. The Neurostimulation Appropriateness Consensus Committee (NACC) safety guidelines for the reduction of severe neurological injury[J]. Neuromodulation, 2017, 20(1): 15-30. DOI: 10.1111/ner.12564.
|
| [28] |
Blackburn AZ, Chang HH, DiSilvestro K, et al. Spinal cord stimulation via percutaneous and open implantation: systematic review and meta-analysis examining complication rates[J]. World Neurosurg, 2021, 154: 132-143.e1. DOI: 10.1016/j.wneu.2021.07.077.
|
| [29] |
Shils JL, Arle JE. Neuromonitoring for spinal cord stimulation lead placement under general anesthesia[J]. J Clin Neurol, 2018, 14(4): 444-453. DOI: 10.3988/jcn.2018.14.4.444.
|
| [30] |
Schoen N, Chieng LO, Madhavan K, et al. The use of intraoperative electromyogram during spinal cord stimulator placement surgery: a case series[J]. World Neurosurg, 2017, 100: 74-84. DOI: 10.1016/j.wneu.2016.12.077.
|
| [31] |
Hwang R, Field N, Kumar V, et al. Intraoperative neuromonitoring in percutaneous spinal cord stimulator placement[J]. Neuromodulation, 2019, 22(3): 341-346. DOI: 10.1111/ner.12886.
|
| [32] |
Edwards CA, Kouzani A, Lee KH, et al. Neurostimulation devices for the treatment of neurologic disorders[J]. Mayo Clin Proc, 2017, 92(9): 1427-1444. DOI: 10.1016/j.mayocp.2017.05.005.
|
| [33] |
Vorobyev AN, Burmistrova AV, Puzin KM, et al. Clinical outcome after epidural spinal cord stimulation in patients with severe traumatic brain injury[J]. Cureus, 2024, 16(7): e65753. DOI: 10.7759/cureus.65753.
|
| [34] |
Lo YT, Lam JL, Jiang L, et al. Cervical spinal cord stimulation for treatment of upper limb paralysis: a narrative review[J]. J Hand Surg Eur Vol, 2025, 50(6): 781-795. DOI: 10.1177/17531934241307515.
|
| [35] |
Greiner N, Barra B, Schiavone G, et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord[J]. Nat Commun, 2021, 12(1): 435. DOI: 10.1038/s41467-020-20703-1.
|
| [36] |
Higashiyama N, Tamura S, Sugawara T. Efficacy of spinal cord stimulation for failed back surgery syndrome in elderly patients: a retrospective study[J]. Pain Res Manag, 2023, 2023: 2136562. DOI: 10.1155/2023/2136562.
|
| [37] |
Goel V, Kaizer AM, Jain S, et al. Intraoperative neurophysiological monitoring and spinal cord stimulator implantation[J]. Reg Anesth Pain Med, 2024, 49(3): 192-199. DOI: 10.1136/rapm-2023-104325.
|
| [38] |
Chua NHL, John T, Buchser E. Epidural stimulation of the lumbosacral spinal cord after basal ganglia haemorrhage: a case study[J]. Medical Research Archives, 2023, 11(3): 3689. DOI: 10.18103/mra.v11i3.3689.
|
| [39] |
Bogacheva IN, Shcherbakova NA, Moshonkina TR, et al. Electrical stimulation of the spinal cord as a method of regulation walking kinematics in post-stroke patients[J]. J Evol Biochem Physiol, 2023, 59(2): 542-553. DOI: 10.1134/S0022093023020205.
|
| [40] |
Tekmyster G, Jonely H, Lee DW, et al. Physical therapy considerations and recommendations for patients following spinal cord stimulator implant surgery[J]. Neuromodulation, 2023, 26(1): 260-269. DOI: 10.1111/ner.13391.
|
| [41] |
Yang Y, Tang Y, Qin H, et al. Efficacy of transcutaneous electrical nerve stimulation in people with pain after spinal cord injury: a meta-analysis[J]. Spinal Cord, 2022, 60(5): 375-381. DOI: 10.1038/s41393-022-00776-z.
|