切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 178 -182. doi: 10.3877/cma.j.issn.2095-123X.2020.03.011

所属专题: 文献

综述

责任血管与三叉神经痛显微血管减压术的关系
李强1, 于炎冰1, 杨文强1, 李锐1, 张黎1,()   
  1. 1. 100029 北京,中日友好医院神经外科
  • 收稿日期:2020-04-01 出版日期:2020-06-15
  • 通信作者: 张黎

Relationship between offending vessels and microvascular decompression for trigeminal neuralgia

Qiang Li1, Yanbing Yu1, Wenqiang Yang1, Rui Li1, Li Zhang1,()   

  1. 1. Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
  • Received:2020-04-01 Published:2020-06-15
  • Corresponding author: Li Zhang
引用本文:

李强, 于炎冰, 杨文强, 李锐, 张黎. 责任血管与三叉神经痛显微血管减压术的关系[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(03): 178-182.

Qiang Li, Yanbing Yu, Wenqiang Yang, Rui Li, Li Zhang. Relationship between offending vessels and microvascular decompression for trigeminal neuralgia[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2020, 10(03): 178-182.

三叉神经痛(TN)常表现为单侧反复发作性电击样疼痛,其疼痛范围严格限制在三叉神经感觉根分布的范围内,其重要病因是责任血管对三叉神经感觉根的压迫,最常见的类型为经典型TN(CTN)。神经血管压迫(NVC)的位置可发生于颅内桥小脑角区(CPA)三叉神经感觉根的任何部位,而出脑干区(REZ)是最常见的压迫位置。造成压迫的责任血管的类型不一。三叉神经感觉根长轴与身体长轴的夹角度数、REZ长度、神经纤维发生的扭曲旋转及不同的责任血管压迫位置都可能会影响TN疼痛的范围。显微血管减压术(MVD)是CTN患者最有效的外科治疗方法,具有很高的治愈率和较少的并发症,但术后无效和复发仍占有一定比率,术中准确判断责任血管压迫位置并充分减压是术后疼痛有效缓解的重要保证,但是其中高达30%的细微压迫不能被发现,多重血管压迫也并不少见。NVC位置与责任血管类型是影响TN疼痛范围的主要因素,对NVC位置进行区域划分并进一步研究不同NVC位置中责任血管类型对TN疼痛范围的影响,为提高MVD治疗CTN的成功率提供理论依据。

Trigeminal neuralgia (TN) is usually characterized by unilateral recurrent electric shock-like pain, and its painful range is strictly limited to the distribution of the branches from trigeminal sensory root, its etiology is neurovascular conflict (NVC) of the trigeminal sensory root, classic trigeminal neuralgia (CTN) is the most common type. The location of NVC can occur in any part of the trigeminal sensory root, and root entry zone (REZ) of the trigeminal sensory root is the most common position of NVC. The types and proportions of offending vessels are different. The angle between the long axis of trigeminal nerve root and the long axis of body, the length of REZ area, the rotation of trigeminal sensory fiber and the different compression position of trigeminal nerve sensory root can affect the painful range of TN. Microvascular decompression (MVD) is the most effective surgical treatment for CTN patients, with high cure rate and few complications, but there are still a certain proportion of ineffective and recurrence after operation. Accurate judgment of NVC position, complete release of offending vessels and adequate decompression are the important guarantee of postoperative relief rate effectively. However, up to 30% of slim compression cannot be found, and multiple vascular compression occasionally occurs. The location of NVC and the proportion of offending vessels are the main factors affecting the painful range of TN. Further studies which are divisions of locations from NVC and influences of types from offending vessels in different positions on the painful range of TN, will provide theoretical basis for improving the success rate while patients with CTN have MVD surgery.

[1]
Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition[J]. Cephalalgia, 2018, 38(1): 1-211.
[2]
Cruccu G, Finnerup NB, Jensen TS, et al. Trigeminal neuralgia: new classification and diagnostic grading for practice and research[J]. Neurology, 2016, 87(2): 220-228.
[3]
Maarbjerg S, Gozalov A, Olesen J, et al. Trigeminal neuralgia--a prospective systematic study of clinical characteristics in 158 patients[J]. Headache, 2014, 54(10): 1574-1582.
[4]
Love S, Coakham HB. Trigeminal neuralgia: pathology and pathogenesis[J]. Brain, 2001, 124(Pt 12): 2347-2360.
[5]
Dumot C, Brinzeu A, Berthiller J, et al. Trigeminal neuralgia due to venous neurovascular conflicts: outcome after microvascular decompression in a series of 55 consecutive patients[J]. Acta Neurochir (Wien), 2017, 159(2): 237-249.
[6]
Chen GQ, Wang XS, Wang L, et al. Arterial compression of nerve is the primary cause of trigeminal neuralgia[J]. Neurol Sci, 2014, 35(1): 61-66.
[7]
Cruccu G. Trigeminal neuralgia[J]. Continuum (Minneap Minn), 2017, 23(2, Selected Topics in Outpatient Neurology): 396-420.
[8]
De Ridder D, Moller A, Verlooy J, et al. Is the root entry/exit zone important in microvascular compression syndromes?[J]. Neurosurgery, 2002, 51(2): 427-433; discussion 433-424.
[9]
Sindou M, Howeidy T, Acevedo G. Anatomical observations during microvascular decompression for idiopathic trigeminal neuralgia (with correlations between topography of pain and site of the neurovascular conflict). Prospective study in a series of 579 patients[J]. Acta Neurochir (Wien), 2002, 144(1): 1-12; discussion 12-13.
[10]
Barker FG, Jannetta PJ, Bissonette DJ, et al. The long-term outcome of microvascular decompression for trigeminal neuralgia[J]. N Engl J Med, 1996, 334(17): 1077-1083.
[11]
Natori Y, Rhoton AL, Jr. Microsurgical anatomy of the superior orbital fissure[J]. Neurosurgery, 1995, 36(4): 762-775.
[12]
Govsa F, Kayalioglu G, Erturk M, et al. The superior orbital fissure and its contents[J]. Surg Radiol Anat, 1999, 21(3): 181-185.
[13]
Shankland WE. The trigeminal nerve. Part IV: the mandibular division[J]. Cranio, 2001, 19(3): 153-161.
[14]
Joo W, Yoshioka F, Funaki T, et al. Microsurgical anatomy of the trigeminal nerve[J]. Clin Anat, 2014, 27(1): 61-88.
[15]
Shankland WE. The trigeminal nerve. Part I: an over-view[J]. Cranio, 2000, 18(4): 238-248.
[16]
Rhoton AL Jr. The cerebellopontine angle and posterior fossa cranial nerves by the retrosigmoid approach[J]. Neurosurgery, 2000, 47(3 Suppl): S93-S129.
[17]
Gudmundsson K, Rhoton AL Jr, Rushton JG. Detailed anatomy of the intracranial portion of the trigeminal nerve[J]. J Neurosurg, 1971, 35(5): 592-600.
[18]
Peker S, Kurtkaya O, Uzün I, et al. Microanatomy of the central myelin-peripheral myelin transition zone of the trigeminal nerve[J]. Neurosurgery, 2006, 59(2): 354-359; discussion 354-359.
[19]
Dandy WE. The treatment of trigeminal neuralgia by the cerebellar route[J]. Ann Surg, 1932, 96(4): 787-795.
[20]
García-Pastor C, López-González F, Revuelta R, et al. Trigeminal neuralgia secondary to arteriovenous malformations of the posterior fossa[J]. Surg Neurol, 2006, 66(2): 207-211; discussion 211.
[21]
Kato N, Tanaka T, Sakamoto H, et al. Identification of a persistent primitive trigeminal artery following the transposition technique for trigeminal neuralgia: a case report[J]. Pain Res Manag, 2011, 16(5): 357-359.
[22]
Devor M, Amir R, Rappaport ZH. Pathophysiology of trigeminal neuralgia: the ignition hypothesis[J]. Clin J Pain, 2002, 18(1): 4-13.
[23]
Zakrzewska JM. "Nerve combing" for trigeminal neuralgia without vascular compression[J]. Clin J Pain, 2009, 25(7): 652.
[24]
Miller JP, Acar F, Hamilton BE, et al. Radiographic evaluation of trigeminal neurovascular compression in patients with and without trigeminal neuralgia[J]. J Neurosurg, 2009, 110(4): 627-632.
[25]
Levitt MR, Ramanathan D, Vaidya SS, et al. Endovascular palliation of avm-associated intractable trigeminal neuralgia via embolization of the artery of the foramen rotundum[J]. Pain Med, 2011, 12(12): 1824-1830.
[26]
Sekula RF, Frederickson AM, Jannetta PJ, et al. Microvascular decompression in patients with isolated maxillary division trigeminal neuralgia, with particular attention to venous pathology[J]. Neurosurg Focus, 2009, 27(5): E10.
[27]
Antonini G, Di Pasquale A, Cruccu G, et al. Magnetic resonance imaging contribution for diagnosing symptomatic neurovascular contact in classical trigeminal neuralgia: a blinded case-control study and meta-analysis[J]. Pain, 2014, 155(8): 1464-1471.
[28]
Leal PR, Barbier C, Hermier M, et al. Atrophic changes in the trigeminal nerves of patients with trigeminal neuralgia due to neurovascular compression and their association with the severity of compression and clinical outcomes[J]. J Neurosurg, 2014, 120(6): 1484-1495.
[29]
Maarbjerg S, Wolfram F, Gozalov A, et al. Significance of neurovascular contact in classical trigeminal neuralgia[J]. Brain, 2015, 138(Pt 2): 311-319.
[30]
Maarbjerg S, Di Stefano G, Bendtsen L, et al. Trigeminal neuralgia-diagnosis and treatment[J]. Cephalalgia, 2017, 37(7): 648-657.
[31]
Leal PR, Roch JA, Hermier M, et al. Structural abnormalities of the trigeminal root revealed by diffusion tensor imaging in patients with trigeminal neuralgia caused by neurovascular compression: a prospective, double-blind, controlled study[J]. Pain, 2011, 152(10): 2357-2364.
[32]
DeSouza DD, Davis KD, Hodaie M. Reversal of insular and microstructural nerve abnormalities following effective surgical treatment for trigeminal neuralgia[J]. Pain, 2015, 156(6): 1112-1123.
[33]
Cutbush K, Atkinson RL. Treatment of trigeminal neuralgia by posterior fossa microvascular decompression[J]. Aust N Z J Surg, 1994, 64(3): 173-176.
[34]
Piatt JH Jr, Wilkins RH. Treatment of tic douloureux and hemifacial spasm by posterior fossa exploration: therapeutic implications of various neurovascular relationships[J]. Neurosurgery, 1984, 14(4): 462-471.
[35]
Zakrzewska JM, Thomas DG. Patient’s assessment of outcome after three surgical procedures for the management of trigeminal neuralgia[J]. Acta Neurochir (Wien), 1993, 122(3-4): 225-230.
[36]
Illingworth NM. Trigeminal neuralgia treated by microvascular decompression: a long-term follow-up study[J]. Br J Neurosurg, 1995, 9(1): 13-20.
[37]
Forbes J, Cooper C, Jermakowicz W, et al. Microvascular decompression: salient surgical principles and technical nuances[J]. J Vis Exp, 2011, 53: e2590.
[38]
Pamir MN, Peker S. Microvascular decompression for trigeminal neuralgia: a long-term follow-up study[J]. Minim Invasive Neurosurg, 2006, 49(6): 342-346.
[39]
Tyler-Kabara EC, Kassam AB, Horowitz MH, et al. Predictors of outcome in surgically managed patients with typical and atypical trigeminal neuralgia: comparison of results following microvascular decompression[J]. J Neurosurg, 2002, 96(3): 527-531.
[40]
Ko AL, Ozpinar A, Lee A, et al. Long-term efficacy and safety of internal neurolysis for trigeminal neuralgia without neurovascular compression[J]. J Neurosurg, 2015, 122(5): 1048-1057.
[41]
Broggi G, Ferroli P, Franzini A, et al. Microvascular decompression for trigeminal neuralgia: comments on a series of 250 cases, including 10 patients with multiple sclerosis[J]. J Neurol Neurosurg Psychiatry, 2000, 68(1): 59-64.
[42]
Chakravarthi PS, Ghanta R, Kattimani V. Microvascular decompression treatment for trigeminal neuralgia[J]. J Craniofac Surg, 2011, 22(3): 894-898.
[43]
Kabatas S, Albayrak SB, Cansever T, et al. Microvascular decompression as a surgical management for trigeminal neuralgia: a critical review of the literature[J]. Neurol India, 2009, 57(2): 134-138.
[44]
Zakrzewska JM, Coakham HB. Microvascular decompression for trigeminal neuralgia: update[J]. Curr Opin Neurol, 2012, 25(3): 296-301.
[45]
Pollock BE. Surgical management of medically refractory trigeminal neuralgia[J]. Curr Neurol Neurosci Rep, 2012, 12(2): 125-131.
[46]
Olson S, Atkinson L, Weidmann M. Microvascular decompression for trigeminal neuralgia: recurrences and complications[J]. J Clin Neurosci, 2005, 12(7): 787-789.
[47]
Ugwuanyi UC, Kitchen ND. The operative findings in re-do microvascular decompression for recurrent trigeminal neuralgia[J]. Br J Neurosurg, 2010, 24(1): 26-30.
[48]
Gu W, Zhao W. Microvascular decompression for recurrent trigeminal neuralgia[J]. J Clin Neurosci, 2014, 21(9): 1549-1553.
[49]
Rzaev DA, Kulikova EV, Moysak GI, et al. Teflon granuloma after microvascular decompression of the trigeminal nerve root in a patient with recurrent trigeminal neuralgia[J]. Zh Vopr Neirokhir Im N N Burdenko, 2016, 80(2): 78-83.
[50]
Capelle HH, Brandis A, Tschan CA, et al. Treatment of recurrent trigeminal neuralgia due to teflon granuloma[J]. J Headache Pain, 2010, 11(4): 339-344.
[51]
Feng BH, Wang XH, Li ST. Posterior fossa re-exploration for recurrent trigeminal neuralgia: operative findings and surgical techniques[J]. J Craniofac Surg, 2018, 29(5): 1284-1286.
[52]
Feng BH, Zheng XS, Liu M, et al. Microvascular decompression for trigeminal neuralgia: zone exploration and decompression techniques[J]. J Craniofac Surg, 2015, 26(8): 2381-2384.
[53]
Günther T, Gerganov VM, Stieglitz L, et al. Microvascular decompression for trigeminal neuralgia in the elderly: long-term treatment outcome and comparison with younger patients[J]. Neurosurgery, 2009, 65(3): 477-482; discussion 482.
[54]
Jo KW, Kong DS, Hong KS, et al. Long-term prognostic factors for microvascular decompression for trigeminal neuralgia[J]. J Clin Neurosci, 2013, 20(3): 440-445.
[55]
Hamlyn PJ, King TT. Neurovascular compression in trigeminal neuralgia: a clinical and anatomical study[J]. J Neurosurg, 1992, 76(6): 948-954.
[56]
Li ST, Pan Q, Liu N, et al. Trigeminal neuralgia: what are the important factors for good operative outcomes with microvascular decompression[J]. Surg Neurol, 2004, 62(5): 400-404; discussion 404-405.
[57]
Jannetta PJ. Neurovascular compression in cranial nerve and systemic disease[J]. Ann Surg, 1980, 192(4): 518-525.
[58]
Sindou M, Leston J, Decullier E, et al. Microvascular decompression for primary trigeminal neuralgia: long-term effectiveness and prognostic factors in a series of 362 consecutive patients with clear-cut neurovascular conflicts who underwent pure decompression[J]. J Neurosurg, 2007, 107(6): 1144-1153.
[59]
Sindou M, Chiha M, Mertens P. Anatomical findings in microsurgical vascular decompression for trigeminal neuralgia. Correlations between topography of pain and site of the neuro-vascular conflict[J]. Acta Neurochir Suppl, 1995, 64: 125-127.
[1] 任鸿翔, 张黎, 张瑜廉, 刘学来, 于炎冰. 脑干听觉诱发电位在面肌痉挛显微血管减压术中的应用价值[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 87-91.
[2] 张永明, 许少年, 赵鹏程, 姜国伟, 张圣帮, 丁俊, 钱峰. 神经电生理监测下显微血管减压术治疗左侧面肌痉挛[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 191-192.
[3] 任鸿翔, 张黎, 申宇晓, 任贵玲, 于炎冰. 桥小脑角区肿瘤继发颅神经疾患的临床特点及疗效研究[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 177-181.
[4] 贾戈, 任鸿翔, 张黎, 张瑜廉, 于炎冰. 面肌痉挛显微血管减压术中不同听力保护策略的疗效:一项随机对照研究[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 170-176.
[5] 樊晓彤, 闫峰, 王亚明. 立体定向机器人辅助经皮穿刺半月神经节球囊扩张压迫术[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 191-192.
[6] 中国医师协会功能神经外科专家委员会, 世界华人神经外科协会功能神经外科专家委员会, 中国研究型医院学会神经外科学专业委员会, 中华医学会神经外科分会功能神经外科学组. 经皮球囊压迫术治疗三叉神经痛中国专家共识[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 260-268.
[7] 李岩峰, 马逸. 经皮穿刺球囊压迫术治疗三叉神经痛在中国的现状与展望[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 193-195.
[8] 种玉龙, 徐武, 王晶, 姜成荣, 梁维邦. 头颅CTA检查在微血管减压术前安全性评估中的临床意义[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 282-284.
[9] 王晶, 种玉龙, 姜成荣, 陆天宇, 戴宇翔, 梁维邦. 悬吊责任动脉技术治疗面肌痉挛的临床分析[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 277-281.
[10] 王柏嵊, 张黎, 于炎冰. 面肌痉挛病因学的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 246-248.
[11] 姜成荣, 徐武, 种玉龙, 王晶, 周璐, 梁维邦. 三叉神经痛显微血管减压术中岩静脉的分型及处理策略[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 200-203.
[12] 徐武, 姜成荣, 梁维邦. 卵圆孔形态和外口面积对半月神经节球囊压迫术的影响[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 196-199.
[13] 蒋亦林, 伍刚, 刘波, 沈洁, 刘如恩. 继发性三叉神经痛诊疗策略[J]. 中华临床医师杂志(电子版), 2022, 16(07): 643-646.
[14] 王宇博, 杨铭. 芒针治疗三叉神经痛验案[J]. 中华针灸电子杂志, 2021, 10(03): 106-107.
[15] 史鹏飞, 王常伟, 郭亚洲, 刘霄, 李锴, 刘禹, 何兵, 赵余涛, 刘德中. 经皮穿刺球囊压迫与显微血管减压术治疗老年人三叉神经痛的疗效及安全性[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 258-262.
阅读次数
全文


摘要