切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 177 -181. doi: 10.3877/cma.j.issn.2095-123X.2024.03.009

综述

炎症小体在创伤性脑损伤中作用的研究进展
王燕1, 梁海乾1, 郭姗姗2,()   
  1. 1. 300162 天津,武警特色医学中心神经外科
    2. 100088 北京,火箭军特色医学中心全科医学科
  • 收稿日期:2023-11-21 出版日期:2024-06-15
  • 通信作者: 郭姗姗

Research advances in role of inflammasome in traumatic brain injury

Yan Wang1, Haiqian Liang1, Shanshan Guo2,()   

  1. 1. Department of Neurosurgery, Specialized Medical Center of Armed Police Force, Tianjin 300162, China
    2. Department of General Practice, Specialized Medical Center of Rocket Army, Beijing 100088, China
  • Received:2023-11-21 Published:2024-06-15
  • Corresponding author: Shanshan Guo
引用本文:

王燕, 梁海乾, 郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 177-181.

Yan Wang, Haiqian Liang, Shanshan Guo. Research advances in role of inflammasome in traumatic brain injury[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2024, 14(03): 177-181.

创伤性脑损伤(TBI)具有发病率高、致残率高和死亡率高的特点。神经炎症反应在TBI后继发性脑损伤的病理过程中发挥重要作用,适度的神经炎症反应可以促进组织损伤后细胞碎片清除以及加速损伤神经元修复,但过度的神经炎症反应则会加重细胞损伤,导致神经症状和神经退行性病变。炎症小体是一种蛋白酶复合物,是神经炎症反应的重要组成部分。近年来,随着对炎症小体研究的不断深入,其已被认为是TBI潜在的生物标志物和治疗靶点。本文围绕炎症小体在TBI中的作用及其作为新一代的TBI生物标志物和治疗靶点的潜力展开综述。

Traumatic brain injury (TBI) is characterized by high incidence, high disability and high mortality. Neuroinflammatory response plays an important role in the pathological process of secondary brain injury. Moderate neuroinflammatory response can promote the removal of cell debris after tissue injury and accelerate the repair of injured neurons, but excessive neuroinflammatory response can also aggravate cell injury and lead to neurological symptoms and neurodegeneration. The inflammasome is a protease complex that is an important component of the neuroinflammatory response. In recent years, with the deepening of the research on inflammasome, inflammasome has been considered as a potential biomarker and therapeutic target for TBI. This review focuses on the role of inflammasome in TBI and its potential as a new generation biomarker and therapeutic target in TBI.

[1]
Wanner IB, Anderson MA, Song B, et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury[J]. J Neurosci, 2013, 33(31): 12870-12886. DOI: 10.1523/jneurosci.2121-13.2013.
[2]
阎朝龙,闫惠颖. NLRP3炎性小体在创伤性脑损伤中的作用[J].医学研究生学报, 2021, 34(4): 418-423. DOI: 10.16571/j.cnki.1008-8199.2021.04.017.
[3]
Bayen E, Ruet A, Jourdan C, et al. Lawsuit and traumatic brain injury: the relationship between long-lasting sequelae and financial compensation in litigants. Results from the PariS-TBI study[J]. Front Neurol, 2019, 10: 320. DOI: 10.3389/fneur.2019.00320.
[4]
Lozano D, Gonzales-Portillo GS, Acosta S, et al. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities[J]. Neuropsychiatr Dis Treat, 2015, 11: 97-106. DOI: 10.2147/ndt.S65815.
[5]
Simon DW, McGeachy MJ, Bayır H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury[J]. Nat Rev Neurol, 2017, 13(3): 171-191. DOI: 10.1038/nrneurol.2017.13.
[6]
McKee CA, Lukens JR. Emerging roles for the immune system in traumatic brain injury[J]. Front Immunol, 2016, 7: 556. DOI: 10.3389/fimmu.2016.00556.
[7]
Donat CK, Scott G, Gentleman SM, et al. Microglial activation in traumatic brain injury[J]. Front Aging Neurosci, 2017, 9: 208. DOI: 10.3389/fnagi.2017.00208.
[8]
宋鸽,刘晓银,史新宇,等.创伤性脑损伤相关神经炎症的研究进展[J].天津医药, 2020, 48(5): 449-454. DOI: 10.11958/20193631.
[9]
Brown GC, Vilalta A, Fricker M. Phagoptosis-cell death by phagocytosis-plays central roles in physiology, host defense and pathology[J]. Curr Mol Med, 2015, 15(9): 842-851. DOI: 10.2174/156652401509151105130628.
[10]
Rathbone AT, Tharmaradinam S, Jiang S, et al. A review of the neuro- and systemic inflammatory responses in post concussion symptoms: introduction of the "post-inflammatory brain syndrome" PIBS[J]. Brain Behav Immun, 2015, 46: 1-16. DOI: 10.1016/j.bbi.2015.02.009.
[11]
Collins-Praino LE, Corrigan F. Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury?[J]. Brain Behav Immun, 2017, 60: 369-382. DOI: 10.1016/j.bbi.2016.09.027.
[12]
Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance[J]. J Cell Sci, 2017, 130(23): 3955-3963. DOI: 10.1242/jcs.207365.
[13]
Bauernfried S, Scherr MJ, Pichlmair A, et al. Human NLRP1 is a sensor for double-stranded RNA[J]. Science, 2021, 371(6528): eabd0811. DOI: 10.1126/science.abd0811.
[14]
Chavarría-Smith J, Vance RE. The NLRP1 inflammasomes[J]. Immunol Rev, 2015, 265(1): 22-34. DOI: 10.1111/imr.12283.
[15]
陶丙岩,刘羽阳,张泽瀚,等. NLRP3、AIM2炎症小体在创伤性脑损伤中作用的研究进展[J].解放军医学院学报, 2022, 43(9): 993-997. DOI: 10.3969/j.issn.2095-5227.2022.09.015.
[16]
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7): 407-420. DOI: 10.1038/nri.2016.58.
[17]
Sundaram B, Kanneganti TD. Advances in understanding activation and function of the NLRC4 inflammasome[J]. Int J Mol Sci, 2021, 22(3): 1048. DOI: 10.3390/ijms22031048.
[18]
Ghimire L, Paudel S, Jin L, et al. The NLRP6 inflammasome in health and disease[J]. Mucosal Immunol, 2020, 13(3): 388-398. DOI: 10.1038/s41385-020-0256-z.
[19]
Adamczak SE, de Rivero Vaccari JP, Dale G, et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome[J]. J Cereb Blood Flow Metab, 2014, 34(4): 621-629. DOI: 10.1038/jcbfm.2013.236.
[20]
Schimmel SJ, Acosta S, Lozano D. Neuroinflammation in traumatic brain injury: a chronic response to an acute injury[J]. Brain Circ, 2017, 3(3): 135-142. DOI: 10.4103/bc.bc_18_17.
[21]
de Rivero Vaccari JP, Lotocki G, Alonso OF, et al. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury[J]. J Cereb Blood Flow Metab, 2009, 29(7): 1251-1261. DOI: 10.1038/jcbfm.2009.46.
[22]
Silverman WR, de Rivero Vaccari JP, Locovei S, et al. The pannexin 1 channel activates the inflammasome in neurons and astrocytes[J]. J Biol Chem, 2009, 284(27): 18143-18151. DOI: 10.1074/jbc.M109.004804.
[23]
Liu HD, Li W, Chen ZR, et al. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model[J]. Neurochem Res, 2013, 38(10): 2072-2083. DOI: 10.1007/s11064-013-1115-z.
[24]
Irrera N, Pizzino G, Calò M, et al. Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury[J]. Front Pharmacol, 2017, 8: 459. DOI: 10.3389/fphar.2017.00459.
[25]
孙硕,何鑫.创伤性脑损伤与神经炎性反应[J].中国微侵袭神经外科杂志, 2020, 25(5): 232-235. DOI: 10.11850/j.issn.1009-122X.2020.05.012.
[26]
Du H, Li CH, Gao RB, et al. Ablation of GSDMD attenuates neurological deficits and neuropathological alterations after traumatic brain injury[J]. Front Cell Neurosci, 2022, 16: 915969. DOI: 10.3389/fncel.2022.915969.
[27]
Liu W, Chen Y, Meng J, et al. Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo[J]. J Neuroinflammation, 2018, 15(1): 48. DOI: 10.1186/s12974-018-1083-y.
[28]
Kwan J, Horsfield G, Bryant T, et al. IL-6 is a predictive biomarker for stroke associated infection and future mortality in the elderly after an ischemic stroke[J]. Exp Gerontol, 2013, 48(9): 960-965. DOI: 10.1016/j.exger.2013.07.003.
[29]
Cyr B, Hadad R, Keane RW, et al. The role of non-canonical and canonical inflammasomes in inflammaging[J]. Front Mol Neurosci, 2022, 15: 774014. DOI: 10.3389/fnmol.2022.774014.
[30]
Korley FK, Jain S, Sun X, et al. Prognostic value of day-of-injury plasma GFAP and UCH-L1 concentrations for predicting functional recovery after traumatic brain injury in patients from the US TRACK-TBI cohort: an observational cohort study[J]. Lancet Neurol, 2022, 21(9): 803-813. DOI: 10.1016/s1474-4422(22)00256-3.
[31]
O'Brien WT, Pham L, Symons GF, et al. The NLRP3 inflammasome in traumatic brain injury: potential as a biomarker and therapeutic target[J]. J Neuroinflammation, 2020, 17(1): 104. DOI: 10.1186/s12974-020-01778-5.
[32]
Pérez-Bárcena J, Crespí C, Frontera G, et al. Levels of caspase-1 in cerebrospinal fluid of patients with traumatic brain injury: correlation with intracranial pressure and outcome[J]. J Neurosurg, 2020, 134(5): 1644-1649. DOI: 10.3171/2020.2.Jns193079.
[33]
Kerr N, Lee SW, Perez-Barcena J, et al. Inflammasome proteins as biomarkers of traumatic brain injury[J]. PLoS One, 2018, 13(12): e0210128. DOI: 10.1371/journal.pone.0210128.
[34]
Johnson NH, Hadad R, Taylor RR, et al. Inflammatory biomarkers of traumatic brain injury[J]. Pharmaceuticals (Basel), 2022, 15(6): 660. DOI: 10.3390/ph15060660.
[35]
张芮筝,栾永,宋辛叶.创伤性脑损伤相关生物标志物的研究进展[J].大连医科大学学报, 2022, 44(6): 523-528. DOI: 10.11724/jdmu.2022.06.09.
[36]
de Rivero Vaccari JP, Dietrich WD, Keane RW. Therapeutics targeting the inflammasome after central nervous system injury[J]. Transl Res, 2016, 167(1): 35-45. DOI: 10.1016/j.trsl.2015.05.003.
[37]
崔刚,王德亮,付茂武,等.创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J].中华神经创伤外科电子杂志, 2022, 8(6): 324-328. DOI: 10.3877/cma.j.issn.2095-9141.2022.06.002.
[38]
Zahid A, Li B, Kombe AJK, et al. Pharmacological inhibitors of the NLRP3 inflammasome[J]. Front Immunol, 2019, 10: 2538. DOI: 10.3389/fimmu.2019.02538.
[39]
Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition[J]. Nat Chem Biol, 2019, 15(6): 556-559. DOI: 10.1038/s41589-019-0277-7.
[40]
Dempsey C, Rubio Araiz A, Bryson KJ, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice[J]. Brain Behav Immun, 2017, 61: 306-316. DOI: 10.1016/j.bbi.2016.12.014.
[41]
Sun Z, Nyanzu M, Yang S, et al. VX765 attenuates pyroptosis and HMGB1/TLR4/NF-κB pathways to improve functional outcomes in TBI mice[J]. Oxid Med Cell Longev, 2020, 2020: 7879629. DOI: 10.1155/2020/7879629.
[42]
Kerr NA, de Rivero Vaccari JP, Abbassi S, et al. Traumatic brain injury-induced acute lung injury: evidence for activation and inhibition of a neural-respiratory-inflammasome axis[J]. J Neurotrauma, 2018, 35(17): 2067-2076. DOI: 10.1089/neu.2017.5430.
[43]
Lee SW, de Rivero Vaccari JP, Truettner JS, et al. The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury[J]. J Neuroinflammation, 2019, 16(1): 27. DOI: 10.1186/s12974-019-1423-6.
[1] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[2] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[3] 黄海, 程必盛, 黄健. 2024年欧洲泌尿外科学会年会:前列腺癌研究的前沿探索与未来趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 202-207.
[4] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[5] 张云飞, 吐尔洪江·吐逊. NLRP3炎症小体及其在肝脏缺血-再灌注损伤中的作用机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 398-403.
[6] 张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 106-112.
[7] 张薇, 郭姗姗. 轻型创伤性脑损伤远期后遗症流行病学的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 117-121.
[8] 王如海, 韩超, 于强, 胡海成, 孙菲琳, 杨震. 重型创伤性脑损伤患者术后慢性意识障碍的危险因素及其预测价值[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 78-83.
[9] 朱先理, 王守森. 大语言模型在创伤性脑损伤病历书写的应用前景[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 55-57.
[10] 伍宵, 潘立, 谢理政, 茆翔. 幽门螺杆菌感染和循环miRNA变化与老年脑干出血患者应激性溃疡的关系[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 42-47.
[11] 胡贤瑞, 伍振国, 何竟. 高压氧治疗创伤性脑损伤患者认知功能障碍疗效的Meta分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 21-36.
[12] 武文晓, 张大奎, 孙志刚, 韩子翰, 陈少轩, 侯智勇, 孙白龙, 介建政. pMMR/MSS型结肠癌免疫治疗效果及预后标志物研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 41-56.
[13] 张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.
[14] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(09): 939-947.
[15] 肖韩艳, 王子杰, 王岳, 李岩. 槲皮素通过抑制小鼠骨髓来源泡沫细胞焦亡抗动脉粥样硬化的研究[J]. 中华卫生应急电子杂志, 2024, 10(01): 26-32.
阅读次数
全文


摘要