[1] |
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 459-480. DOI: 10.1016/S1474-4422(18)30499-X.
|
[2] |
|
[3] |
Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke[J]. Cochrane Database Syst Rev, 2014, 11(11): CD010820. DOI: 10.1002/14651858.
|
[4] |
Elsner B, Kwakkel G, Kugler J, et al. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials[J]. J Neuroeng Rehabil, 2017, 14(1): 95. DOI: 10.1186/s12984-017-0301-7.
|
[5] |
Weiss PL, Rand D, Katz N, et al. Video capture virtual reality as a flexible and effective rehabilitation tool[J]. J Neuroeng Rehabil, 2004, 1(1): 12. DOI: 10.1186/1743-0003-1-12.
|
[6] |
Massetti T, Crocetta TB, Silva TDD, et al. Application and outcomes of therapy combining transcranial direct current stimulation and virtual reality: a systematic review[J]. Disabil Rehabil Assist Technol, 2017, 12(6): 551-559. DOI: 10.1080/17483107.2016.1230152.
|
[7] |
|
[8] |
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement[J]. PLoS Med, 2009, 6(7): e1000097. DOI: 10.1371/journal.pmed.1000097.
|
[9] |
Cashin AG, McAuley JH. Clinimetrics: Physiotherapy Evidence Database (PEDro) scale[J]. J Physiother, 2020, 66(1): 59. DOI: 10.1016/j.jphys.2019.08.005.
|
[10] |
Olivo SA, Macedo LG, Gadotti IC, et al. Scales to assess the quality of randomized controlled trials: a systematic review[J]. Phys Ther, 2008, 88(2): 156-175. DOI: 10.2522/ptj.20070147.
|
[11] |
汪洋. Cochrane偏倚风险评估工具简介[J].中国全科医学, 2019, 22(11): 1322.
|
[12] |
Lee SJ, Chun MH. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke[J]. Arch Phys Med Rehabil, 2014, 95(3): 431-438. DOI: 10.1016/j.apmr.2013.10.027.
|
[13] |
Viana RT, Laurentino GE, Souza RJ, et al. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial[J]. NeuroRehabilitation, 2014, 34(3): 437-446. DOI: 10.3233/NRE-141065.
|
[14] |
Yao X, Cui L, Wang J, et al. Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: a randomized controlled trial[J]. J Neuroeng Rehabil, 2020, 17(1): 73. DOI: 10.1186/s12984-020-00699-x.
|
[15] |
Lee S, Cha H. The effect of clinical application of transcranial direct current stimulation combined with non-immersive virtual reality rehabilitation in stroke patients[J]. Technol Health Care, 2022, 30(1): 117-127. DOI: 10.3233/THC-212991.
|
[16] |
|
[17] |
Llorens R, Fuentes MA, Borrego A, et al. Effectiveness of a combined transcranial direct current stimulation and virtual reality-based intervention on upper limb function in chronic individuals post-stroke with persistent severe hemiparesis: a randomized controlled trial[J]. J Neuroeng Rehabil, 2021, 18(1): 108. DOI: 10.1186/s12984-021-00896-2.
|
[18] |
Sun Y, Zehr EP. Training-induced neural plasticity and strength are amplified after stroke[J]. Exerc Sport Sci Rev, 2019, 47(4): 223-229. DOI: 10.1249/JES.0000000000000199.
|
[19] |
Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning[J]. Neuron, 2010, 66(2): 198-204. DOI: 10.1016/j.neuron.2010.03.035.
|
[20] |
|
[21] |
Wang ZR, Wang P, Xing L, et al. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients[J]. Neural Regen Res, 2017, 12(11): 1823-1831. DOI: 10.4103/1673-5374.219043.
|
[22] |
|
[23] |
Brunner I, Skouen J S, Hofstad H, et al. Virtual Reality Training for Upper Extremity in Subacute stroke (VIRTUES): a multicenter RCT[J]. Neurology, 2017, 89(24): 2413-2421. DOI: 10.1212/WNL.0000000000004744.
|
[24] |
|
[25] |
Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation[J]. Neuroscientist, 2011, 17(1): 37-53. DOI: 10.1177/1073858410386614.
|
[26] |
Stagg CJ, Lin RL, Mezue M, et al. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex[J]. J Neurosci, 2013, 33(28): 11425-11431. DOI: 10.1523/JNEUROSCI.3887-12.2013.
|
[27] |
|
[28] |
Cassani R, Novak GS, Falk TH, et al. Virtual reality and non-invasive brain stimulation for rehabilitation applications: a systematic review[J]. J Neuroeng Rehabil, 2020, 17(1): 147. DOI: 10.1186/s12984-020-00780-5.
|
[29] |
Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools[J]. Clin Neurophysiol, 2016, 127(2): 1031-1048. DOI: 10.1016/j.clinph.2015.11.012.
|