切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (02) : 75 -83. doi: 10.3877/cma.j.issn.2095-123X.2023.02.002

临床研究

基于虚拟现实技术施经颅直流电刺激对脑卒中患者上肢功能影响的Meta分析
姜佳慧, 毕鸿雁()   
  1. 250355 济南,山东中医药大学康复医学院
    250014 济南,山东中医药大学附属医院康复科
  • 收稿日期:2022-05-10 出版日期:2023-04-15
  • 通信作者: 毕鸿雁

Meta-analysis of the effect of transcranial direct current stimulation on upper limb function in stroke patients based on virtual reality technology

Jiahui Jiang, Hongyan Bi()   

  1. Rehabilitation Medicine College, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
    Department of Rehabilitation, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Ji'nan 250014, China
  • Received:2022-05-10 Published:2023-04-15
  • Corresponding author: Hongyan Bi
  • Supported by:
    Key Projects of Chinese Medicine Science and Technology in Shandong Province(2020Z04)
引用本文:

姜佳慧, 毕鸿雁. 基于虚拟现实技术施经颅直流电刺激对脑卒中患者上肢功能影响的Meta分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 75-83.

Jiahui Jiang, Hongyan Bi. Meta-analysis of the effect of transcranial direct current stimulation on upper limb function in stroke patients based on virtual reality technology[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(02): 75-83.

目的

系统评价基于虚拟现实(VR)技术施经颅直流电刺激(tDCS)对脑卒中患者上肢功能的有效性。

方法

计算机检索PubMed、EMBASE、Web of Science、Cochrane Library、中国知网和万方数据库,筛选在VR技术的基础上施tDCS治疗脑卒中患者上肢功能的随机对照研究。使用PEDro量表和Cochrane风险评估工具进行质量评价和偏倚风险评估。运用Review Manager5.3软件对纳入文献进行Meta分析、亚组分析、敏感性分析及发表偏倚分析。

结果

共纳入6篇文献、159例患者。试验组上肢Fugl-Meyer运动功能量表、黑盒测试、改良Ashworth痉挛量表和改良Barthel指数评分与对照组比较,差异有统计学意义(MD=3.38,95%CI:0.57~6.19,P<0.05;MD=6.20,95%CI:2.67~9.74,P<0.05;MD=-0.33,95%CI:-0.62~-0.05,P<0.05;MD=9.65,95%CI:4.28~15.01,P<0.05);Wolf运动功能量表任务表现和完成时间比较,差异无统计学意义(MD=0.27,95%CI:-0.63~1.16,P>0.05;MD=-0.25,95%CI:-4.25~3.75,P>0.05)。

结论

在VR技术的基础上施tDCS有利于脑卒中患者上肢运动功能的恢复,对提高手的灵活性、降低肌张力和改善生活质量也表现出积极作用。

Objective

To systematically evaluate the effectiveness of virtual reality (VR)-based administration of transcranial direct current stimulation on upper limb function in stroke patients.

Methods

A computer search of PubMed, EMBASE, Web of Science, Cochrane Library, CNKI and Wanfang Data was conducted to screen a randomised controlled study of upper limb function in stroke patients using transcranial direct current stimulation based on virtual reality technology. The PEDro scale and the Cochrane Risk Assessment Tool were used for quality assessment and risk of bias assessment. Meta-analysis, subgroup analysis, sensitivity analysis and publication bias analysis were performed on the included literature using Review Manager 5.3 software.

Results

A total of 6 papers and 159 patients were included. The scores of Fugl-Meyer motor function scale, Black box testing, modified Ashworth spasticity scale and modified Barthel index in the test group were significantly different from those in the control group (MD=3.38, 95%CI: 0.57-6.19, P<0.05; MD=6.20, 95%CI: 2.67-9.74, P<0.05; MD=0.33, 95%CI: 0.62-0.05, P<0.05; MD=9.65, 95%CI: 4.28-15.01, P<0.05); There was no statistically significant difference in Wolf motor function scale task performance and completion time (MD=0.27, 95%CI: -0.63-1.16, P>0.05; MD=-0.25, 95%CI: -4.25-3.75, P>0.05).

Conclusion

Transcranial direct current stimulation based on virtual reality techniques is beneficial for the recovery of upper limb motor function in stroke patients, and has shown positive effects on improving manual dexterity, reducing muscle tone and improving quality of life.

表1 检索策略
Tab.1 Search strategy
图1 文献筛选流程图
Fig.1 Literature screening flow chart
表2 纳入文献的基本特征
Tab.2 Basic characteristics of the included literature
图2 纳入研究的偏倚风险项目百分比
Fig.2 Percentage of risk of bias items included in the study
图3 偏倚风险评估结果
Fig.3 Results of bias risk assessment
图4 2组患者上肢Fugl-Meyer运动功能量表评分的比较
Fig.4 Comparison of upper extremity Fugl-Meyer assessment scores between 2 groups
图5 上肢Fugl-Meyer运动功能量表纳入研究的漏斗图
Fig.5 Funnel plot of upper extremity Fugl-Meyer assessment included studies
图6 2组患者的Wolf运动功能量表评分的比较
Fig.6 Comparison of Wolf motor function test scores between 2 groups
图7 2组患者黑盒测试评分的比较
Fig.7 Comparison of box and block test scores between 2 groups
图8 2组患者改良Ashworth痉挛量表评分的比较
Fig.8 Comparison of modified Ashworth scale scores between 2 groups
图9 2组患者改良Barthel指数评分的比较
Fig.9 Comparison of modified Barthel index scores between 2 groups
[1]
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 459-480. DOI: 10.1016/S1474-4422(18)30499-X.
[2]
《中国脑卒中防治报告》编写组.《中国脑卒中防治报告2020》概要[J].中国脑血管病杂志, 2022, 19(2): 136-144. DOI: 10.3969/j.issn.1672-5921.2022.02.011.
[3]
Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke[J]. Cochrane Database Syst Rev, 2014, 11(11): CD010820. DOI: 10.1002/14651858.
[4]
Elsner B, Kwakkel G, Kugler J, et al. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials[J]. J Neuroeng Rehabil, 2017, 14(1): 95. DOI: 10.1186/s12984-017-0301-7.
[5]
Weiss PL, Rand D, Katz N, et al. Video capture virtual reality as a flexible and effective rehabilitation tool[J]. J Neuroeng Rehabil, 2004, 1(1): 12. DOI: 10.1186/1743-0003-1-12.
[6]
Massetti T, Crocetta TB, Silva TDD, et al. Application and outcomes of therapy combining transcranial direct current stimulation and virtual reality: a systematic review[J]. Disabil Rehabil Assist Technol, 2017, 12(6): 551-559. DOI: 10.1080/17483107.2016.1230152.
[7]
中华医学会,中华医学会杂志社,中华医学会全科医学分会,等.缺血性卒中基层诊疗指南(2021年)[J].中华全科医师杂志, 2021, 20(9): 927-946. DOI: 10.3760/cma.j.cn114798-20210804-00590.
[8]
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement[J]. PLoS Med, 2009, 6(7): e1000097. DOI: 10.1371/journal.pmed.1000097.
[9]
Cashin AG, McAuley JH. Clinimetrics: Physiotherapy Evidence Database (PEDro) scale[J]. J Physiother, 2020, 66(1): 59. DOI: 10.1016/j.jphys.2019.08.005.
[10]
Olivo SA, Macedo LG, Gadotti IC, et al. Scales to assess the quality of randomized controlled trials: a systematic review[J]. Phys Ther, 2008, 88(2): 156-175. DOI: 10.2522/ptj.20070147.
[11]
汪洋. Cochrane偏倚风险评估工具简介[J].中国全科医学, 2019, 22(11): 1322.
[12]
Lee SJ, Chun MH. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke[J]. Arch Phys Med Rehabil, 2014, 95(3): 431-438. DOI: 10.1016/j.apmr.2013.10.027.
[13]
Viana RT, Laurentino GE, Souza RJ, et al. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial[J]. NeuroRehabilitation, 2014, 34(3): 437-446. DOI: 10.3233/NRE-141065.
[14]
Yao X, Cui L, Wang J, et al. Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: a randomized controlled trial[J]. J Neuroeng Rehabil, 2020, 17(1): 73. DOI: 10.1186/s12984-020-00699-x.
[15]
Lee S, Cha H. The effect of clinical application of transcranial direct current stimulation combined with non-immersive virtual reality rehabilitation in stroke patients[J]. Technol Health Care, 2022, 30(1): 117-127. DOI: 10.3233/THC-212991.
[16]
刘远文,黄丽,张淑娴,等.经颅直流电刺激联合虚拟现实训练治疗脑卒中患者上肢功能的随机对照单盲研究[J].华西医学, 2020, 35(5): 544-549. DOI: 10.7507/1002-0179.202003112.
[17]
Llorens R, Fuentes MA, Borrego A, et al. Effectiveness of a combined transcranial direct current stimulation and virtual reality-based intervention on upper limb function in chronic individuals post-stroke with persistent severe hemiparesis: a randomized controlled trial[J]. J Neuroeng Rehabil, 2021, 18(1): 108. DOI: 10.1186/s12984-021-00896-2.
[18]
Sun Y, Zehr EP. Training-induced neural plasticity and strength are amplified after stroke[J]. Exerc Sport Sci Rev, 2019, 47(4): 223-229. DOI: 10.1249/JES.0000000000000199.
[19]
Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning[J]. Neuron, 2010, 66(2): 198-204. DOI: 10.1016/j.neuron.2010.03.035.
[20]
贾杰. "中枢-外周-中枢"闭环康复——脑卒中后手功能康复新理念[J].中国康复医学杂志, 2016, 31(11): 1180-1182. DOI: 10.3969/j.issn.1001-1242.2016.11.001.
[21]
Wang ZR, Wang P, Xing L, et al. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients[J]. Neural Regen Res, 2017, 12(11): 1823-1831. DOI: 10.4103/1673-5374.219043.
[22]
翟艺,徐秀林.基于虚拟现实技术的上肢康复训练系统发展现状[J].中国康复理论与实践, 2014, 20(10): 908-910. DOI: 10.3969/j.issn.1006-9771.2014.10.003.
[23]
Brunner I, Skouen J S, Hofstad H, et al. Virtual Reality Training for Upper Extremity in Subacute stroke (VIRTUES): a multicenter RCT[J]. Neurology, 2017, 89(24): 2413-2421. DOI: 10.1212/WNL.0000000000004744.
[24]
汤从智,蔡倩,杨玺,等.经颅直流电刺激介入任务导向性训练对脑卒中患者上肢功能障碍的影响[J].中华物理医学与康复杂志, 2019, 41(8): 570-574. DOI: 10.3760/cma.j.issn.0254-1424.2019.08.003.
[25]
Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation[J]. Neuroscientist, 2011, 17(1): 37-53. DOI: 10.1177/1073858410386614.
[26]
Stagg CJ, Lin RL, Mezue M, et al. Widespread modulation of cerebral perfusion induced during and after transcranial direct current stimulation applied to the left dorsolateral prefrontal cortex[J]. J Neurosci, 2013, 33(28): 11425-11431. DOI: 10.1523/JNEUROSCI.3887-12.2013.
[27]
朱建华,刘茜茜,郑玉琳,等.脑循环治疗仪联合综合康复训练对急性缺血性脑卒中恢复期的效果观察[J].中华脑科疾病与康复杂志(电子版), 2022, 12(6): 349-354. DOI: 10.3877/cma.j.issn.2095-123X.2022.06.006.
[28]
Cassani R, Novak GS, Falk TH, et al. Virtual reality and non-invasive brain stimulation for rehabilitation applications: a systematic review[J]. J Neuroeng Rehabil, 2020, 17(1): 147. DOI: 10.1186/s12984-020-00780-5.
[29]
Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools[J]. Clin Neurophysiol, 2016, 127(2): 1031-1048. DOI: 10.1016/j.clinph.2015.11.012.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 张云浩, 何玲敏, 孙旭, 马洪贵, 刘磊, 张见荣, 梅傲冰. 基于CT的三维重建模型及术前虚拟手术在输尿管狭窄腹腔镜手术中的应用研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 372-379.
[3] 马振威, 宋润夫, 王兵. ERCP胆道内支架与骑跨十二指肠乳头支架置入治疗不可切除肝门部胆管癌疗效的Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 807-812.
[4] 龚财芳, 赵俊宇, 游川. 围手术期肠内营养在肝癌肝切除患者中有效性及安全性的Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 551-556.
[5] 王芳, 刘达, 左智炜, 盛金平, 陈庭进, 蒋锐. 定量CT与双能X线骨密度仪对骨质疏松诊断效能比较的Meta分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 363-371.
[6] 江西省神经外科质量控制中心. 江西省心源性脑卒中多学科协作防治专家共识[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 264-277.
[7] 张洪, 杨琪, 罗静, 唐茜, 邓鸿, 巩文艳, 王丽坤, 刘静, 艾双春. 多靶点神经调控技术对卒中后上肢运动功能障碍患者的脑网络功能连接研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 278-284.
[8] 许方军, 曹晓光, 王修敏, 王婷, 陈冬冬, 余程冬, 张鹤言. 基于闭环理论的动作观察疗法联合躯干控制训练对脑卒中后下肢运动的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 292-299.
[9] 张雅文, 尹昱, 陈江龙, 杨玉慧, 吕红香, 张琦, 吕佩源. Theta爆发式经颅磁刺激治疗失语症的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 306-311.
[10] 陈冬冬, 余程冬, 曹晓光. 上肢外骨骼机器人在脑卒中康复中的应用与研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 312-317.
[11] 周倩妹, 王宪娥, 徐筱, 老慧琳, 赵欣悦, 胡菁颖. 多元化系统护理对老年人群牙周健康指标影响的系统评价[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 500-506.
[12] 李璇, 邓岚, 郭微, 邓永梅, 刘杰昕. 标准化皮肤管理流程在防治脑卒中患者失禁相关性皮炎中的应用[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 479-482.
[13] 刘志超, 胡风云, 温春丽. 山西省脑卒中危险因素与地域的相关性分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 424-433.
[14] 王丽娜, 吕书霞, 李亚男. 脑卒中偏瘫患者健康焦虑元认知与疾病接受度、恐惧疾病进展的相关性[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 434-440.
[15] 周洪千, 张煜坤, 顾天舒, 胡苏涛, 姜超, 张雪, 张昊, 陶华岳, 刘行, 刘彤, 陈康寅. 既往出血性脑卒中患者行经皮冠脉介入治疗后不良事件的危险因素分析[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 323-329.
阅读次数
全文


摘要