切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2023, Vol. 13 ›› Issue (02) : 113 -117. doi: 10.3877/cma.j.issn.2095-123X.2023.02.008

综述

无创监测技术在脑水肿应用的研究进展
王煜泽, 高文文, 杨磊, 赵海康()   
  1. 710038 西安,西安医学院第二临床医学院
    710005 西安,西安医学院第二附属医院神经外科
  • 收稿日期:2022-05-25 出版日期:2023-04-15
  • 通信作者: 赵海康

Research progress on application of noninvasive monitoring technology in cerebral edema

Yuze Wang, Wenwen Gao, Lei Yang, Haikang Zhao()   

  1. The Second Clinical Medical College of Xi'an Medical University, Xi'an 710038, China
    Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710005, China
  • Received:2022-05-25 Published:2023-04-15
  • Corresponding author: Haikang Zhao
  • Supported by:
    Key Research and Development Program of Shaanxi Province(2020ZDLSF01-02); 2021 Innovation Training Program for College Students of Shaanxi Province(S202111840028); 2021 Innovation Training Program for College Students of Xi'an Medical University(121521028)
引用本文:

王煜泽, 高文文, 杨磊, 赵海康. 无创监测技术在脑水肿应用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 113-117.

Yuze Wang, Wenwen Gao, Lei Yang, Haikang Zhao. Research progress on application of noninvasive monitoring technology in cerebral edema[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2023, 13(02): 113-117.

脑水肿的诊断主要依靠CT、MRI等传统监测技术,但传统技术往往不具备经济、实时动态、可床边监测的理想监测方式。目前,国内外研究较为热门的新型脑水肿监测设备层出不穷、各有千秋,及时通过这些新型无创监测技术对颅脑损伤患者脑水肿趋势和颅脑疾病高危人群的颅内压概况进行监测,可能会对专科医疗行为的决策起到关键辅助指导作用。因此,一种可靠、廉价且适用范围大的脑水肿监测技术已经成为科学研究者、临床工作人员和病患人群的迫切需求。本文围绕无创脑水肿监测技术的研究现状及展望作一综述。

The diagnosis of cerebral edema mainly relies on traditional monitoring techniques such as CT and MRI, but traditional techniques often do not have the ideal monitoring method of economy, real-time dynamic, and bedside monitoring. At present, there are an increasing number of new Brain edema monitoring devices that are popular at home and abroad. These new non-invasive monitoring technologies are used to monitor the situation of brain edema in patients with craniocerebral injury and the profile of intracranial pressure in high-risk populations with craniocerebral diseases. It may play a key role in assisting and guiding the decision-making of specialized medical behavior. Therefore, a reliable, inexpensive and widely applicable brain edema monitoring technology has become an urgent need for scientific researchers, clinical staff and patients. This article reviews the research status and prospect of noninvasive brain edema monitoring techniques.

[1]
Blixt J, Svensson M, Gunnarson E, et al. Aquaporins and blood-brain barrier permeability in early edema development after traumatic brain injury[J]. Brain Res, 2015, 1611: 18-28. DOI: 10.1016/j.brainres.2015.03.004.
[2]
Wijdicks EF, Sheth KN, Carter BS, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2014, 45(4): 1222-1238. DOI: 10.1161/01.str.0000441965.15164.d6.
[3]
陈晨,徐宏,李政,等.脑室内颅内压监测在重型颅脑损伤患者围术期的应用研究[J].中华脑科疾病与康复杂志(电子版), 2022, 12(3): 146-151. DOI: 10.3877/cma.j.issn.2095-123X.2022.03.005.
[4]
Shafi S, Diaz-Arrastia R, Madden C, et al. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival[J]. J Trauma, 2008, 64(2): 335-340. DOI: 10.1097/TA.0b013e31815dd017.
[5]
雷清梅.无创脑水肿监护仪在脑外伤患者的应用观察及预后预测作用[D].广州:南方医科大学, 2018.
[6]
Gwer S, Sheward V, Birch A, et al. The tympanic membrane displacement analyser for monitoring intracranial pressure in children[J]. Childs Nerv Syst, 2013, 29(6): 927-933. DOI: 10.1007/s00381-013-2036-5.
[7]
El-Bouri WK, Vignali D, Iliadi K, et al. Quantifying the contribution of intracranial pressure and arterial blood pressure to spontaneous tympanic membrane displacement[J]. Physiol Meas, 2018, 39(8): 085002. DOI: 10.1088/1361-6579/aad308.
[8]
Dhar R, Sandler RH, Manwaring K,et al. Noninvasive detection of elevated ICP using spontaneous tympanic membrane pulsation[J]. Sci Rep, 2021, 11(1): 21957. DOI: 10.1038/s41598-021-01079-8.
[9]
Zhang X, Medow JE, Iskandar BJ, et al. Invasive and noninvasive means of measuring intracranial pressure: a review[J]. Physiol Meas, 2017, 38(8): R143-R182. DOI: 10.1088/1361-6579/aa7256.
[10]
李丽霞,赵磊,王天龙,等.近红外光谱仪在颈动脉内膜剥脱术中的应用[J].国际麻醉学与复苏杂志, 2020, 41(3): 285-288. DOI: 10.3760/cma.j.issn.1673-4378.2020.03.011.
[11]
Brogan RJ, Kontojannis V, Garara B, et al. Near-infrared spectroscopy (NIRS) to detect traumatic intracranial haematoma: a systematic review and meta-analysis[J]. Brain Inj, 2017, 31(5): 581-588. DOI: 10.1080/02699052.2017.1287956.
[12]
Kussman BD, Imaduddin SM, Gharedaghi MH, et al. Cerebral emboli monitoring using transcranial doppler ultrasonography in adults and children: a review of the current technology and clinical applications in the perioperative and intensive care setting[J]. Anesth Analg, 2021, 133(2): 379-392. DOI: 10.1213/ANE.0000000000005417.
[13]
王孟岩,左云霞.经颅多普勒超声监测脑血流在麻醉手术中的应用[J].华西医学, 2022, 37(1): 131-134. DOI: 10.7507/1002-0179.202107218.
[14]
陈园园,康彧,张嬿,等.经颅多普勒超声联合颈动脉超声在老年脑梗死患者血管病变评估中的应用[J].中国老年学杂志, 2021, 41(4): 705-708. DOI: 10.3969/j.issn.1005-9202.2021.04.011.
[15]
Han SJ, Rutledge WC, Englot DJ, et al. The Presto 1000: a novel automated transcranial Doppler ultrasound system[J]. J Clin Neurosci, 2015, 22(11): 1771-1775. DOI: 10.1016/j.jocn.2015.05.026.
[16]
Wang J, Yang M, Xu H, et al. Diagnostic value of ONSD in sepsis associated encephalopathy of New Zealand rabbits[J]. Brain Res Bull, 2022, 179: 68-73. DOI: 10.1016/j.brainresbull.2021.12.002.
[17]
Rayner M, Holt T, Daspal S, et al. Optic nerve sheath diameter in preterm infants: suggested values[J]. Neonatology, 2021, 118(3): 297-300. DOI: 10.1159/000513721.
[18]
Çelik K, Demiryurek BE. The association between intracranial pressure and optic nerve sheath diameter on patients with head trauma[J]. Arq Neuropsiquiatr, 2021, 79(10): 879-885. DOI: 10.1590/0004-282X-ANP-2020-0478.
[19]
McLaughlin D, Anderson L, Guo J, et al. Serial optic nerve sheath diameter via radiographic imaging: correlation with ICP and outcomes[J]. Neurol Clin Pract, 2021, 11(5): e620-e626. DOI: 10.1212/CPJ.0000000000001038.
[20]
Ertekin T, Boyaci MG, Bilir A, et al. Optic nerve sheath diameter measurement: a means of detecting increased intracranial pressure in pseudotumor cerebri patients[J]. Folia Morphol (Warsz), 2022, 81(3): 567-573. DOI: 10.5603/FM.a2021.0105.
[21]
Chen LM, Wang LJ, Hu Y, et al. Ultrasonic measurement of optic nerve sheath diameter: a non-invasive surrogate approach for dynamic, real-time evaluation of intracranial pressure[J]. Br J Ophthalmol, 2019, 103(4): 437-441. DOI: 10.1136/bjophthalmol-2018-312934.
[22]
王思博,邢英琦,王翠翠,等.经颅多普勒超声及超声测量视神经鞘直径与脑炎患者颅内压增高的相关性[J].中国脑血管病杂志, 2020, 17(6): 315-319. DOI: 10.3639/j.issn.1672-5921.2020.06.006.
[23]
郭栋泽,樊星,乔慧.闪光视觉诱发电位术中监测的研究现状[J].中华神经外科杂志, 2020, 36(5): 529-532. DOI: 10.3760/cma.j.cn112050-20181203-00677.
[24]
吴文娟,任节,张亮.闪光视觉诱发电位在外伤性重型颅内出血术后患者颅内压监测中的价值[J].临床急诊杂志, 2021, 22(9): 614-618. DOI: 10.13201/j.issn.1009-5918.2021.09.009.
[25]
Yang B, Li B, Xu C, et al. Comparison of electrical impedance tomography and intracranial pressure during dehydration treatment of cerebral edema[J]. Neuroimage Clin, 2019, 23: 101909. DOI: 10.1016/j.nicl.2019.101909.
[26]
冯颜.基于脑阻抗的颅内压检测系统研究[D].沈阳:沈阳工业大学, 2019.
[27]
Lee KJ, Park C, Oh J, et al. Non-invasive detection of intracranial hypertension using a simplified intracranial hemo- and hydro-dynamics model[J]. Biomed Eng Online, 2015, 14: 51. DOI: 10.1186/s12938-015-0051-3.
[28]
高文文,王凤鹿,蒋小兵,等.扰动系数在脑出血患者脑水肿监测治疗中的作用[J].中华脑科疾病与康复杂志(电子版), 2020, 10(5): 305-308. DOI: 10.3877/cma.j.issn.2095-123X.2020.05.011.
[29]
王瑞康,张兵,王巧红,等.脑电阻抗监测技术在急性脑梗死患者中的应用进展[J].中国实用神经疾病杂志, 2020, 23(5): 458-461. DOI: 10.12083/SYSJ.2020.05.211.
[30]
刘伟丽,刘宇佳,姚欣,等.应急救援下无创脑水肿监测仪电极快速固定装置的设计及应用[J].北京生物医学工程, 2021, 40(2): 185-189. DOI: 10.3969/j.issn.1002-3208.2021.02.012.
[1] 郭亮, 何思毅, 杨毓斌, 关尚全, 吴学玲, 李少莹. 高原肺水肿患者临床特点分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 879-881.
[2] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[3] 张付意, 侯现增, 汪建军, 辛涛. 有创颅内压监测靶向管控在重型颅脑损伤患者围术期应用价值分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 298-301.
[4] 李显伟, 杨波, 邢立举, 张宇, 郭庆章. 脑出血患者NOX4表达与脑出血后脑水肿程度及功能预后的关系[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 168-172.
[5] 林振飞, 陈世洁. 立体定向穿刺引流术治疗基底节区脑出血的价值探究[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 34-38.
[6] 魏宜功, 周焜, 陈光唐, 王诚, 刘窗溪. 颅内压监测下改良阶梯减压法结合去骨瓣减压治疗颅内高压的疗效分析[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 28-33.
[7] 刘晓龙, 李文臣, 陈勃, 朱文豪, 张晓宇, 王海峰. INT-777对颅脑损伤小鼠脑水肿及血脑屏障通透性的影响[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 325-330.
[8] 何鑫, 武秀权, 费舟, 费霏. 与视器相关的无创颅内压监测[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 372-375.
[9] 管诚, 沈剑虹, 管义祥, 陈建静. 标准大骨瓣减压结合腰大池持续引流术对重型颅脑损伤的疗效与预后的影响[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 281-287.
[10] 曹炜, 王翠雪, 徐珊珊, 袁媛, 张琳琳, 周建新. 不同头高位对aSAH患者术后颅内压及脑灌注压的影响[J]. 中华重症医学电子杂志, 2022, 08(02): 121-125.
[11] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[12] 刘性强, 王文豪, 白映红, 李存晓, 李斌. 二甲双胍下调水通道蛋白4表达改善大鼠颅脑创伤早期脑水肿的研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 221-226.
[13] 陈晨, 徐宏, 李政, 韩杨云. 脑室内颅内压监测在重型颅脑损伤患者围术期的应用研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 146-151.
[14] 程龙阳, 李韶雅, 陈春雷, 王娟, 徐曼曼, 代海滨, 赵鹏来. 贝伐单抗治疗难治性脑水肿临床效果研究[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 204-208.
[15] 王宇梅, 刘猛. 脑梗死后恶性脑水肿预测因素的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 163-166.
阅读次数
全文


摘要