切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 238 -245. doi: 10.3877/cma.j.issn.2095-123X.2025.04.008

综述

神经调控技术在难治性癫痫治疗中的研究进展
信连昌1, 王景景2, 符锋3,()   
  1. 1300162 天津,武警特色医学中心神经外科
    2300162 天津,武警特色医学中心神经创伤修复研究所
    3300162 天津,武警特色医学中心疼痛科
  • 收稿日期:2025-01-29 出版日期:2025-08-15
  • 通信作者: 符锋

Progress of neuroregulatory techniques in the treatment of refractory epilepsy

Lianchang Xin1, Jingjing Wang2, Feng Fu3,()   

  1. 1Department of Neurosurgery, the Special Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China
    2Institute of Neurological Injury Repair, the Special Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China
    3Department of Pain Treatment, the Special Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China
  • Received:2025-01-29 Published:2025-08-15
  • Corresponding author: Feng Fu
  • Supported by:
    Independent Innovation Science Foundation(KYZZCX2415)
引用本文:

信连昌, 王景景, 符锋. 神经调控技术在难治性癫痫治疗中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 238-245.

Lianchang Xin, Jingjing Wang, Feng Fu. Progress of neuroregulatory techniques in the treatment of refractory epilepsy[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(04): 238-245.

癫痫是一种严重的、反复发作的、多因素的神经系统疾病,约1/3的患者可发展为难治性癫痫(RE)。神经调控疗法已成为减少RE发作的替代治疗选择,包括迷走神经刺激、脑深部刺激和反应性神经刺激等侵入性神经调控技术,以及经颅磁刺激、经颅直流电刺激和经颅超声刺激等非侵入性神经调控技术。本文围绕神经调控技术的基本介绍、关键要素及其在RE治疗中的临床研究进展等方面进行综述,旨在评价神经调控技术在RE患者中应用的科学依据,为制订适宜的RE治疗方案提供思路。

Epilepsy is a serious, recurrent, multifactorial neurological disorder, with approximately one-third of patients developing refractory epilepsy (RE). Recently, neuroregulatory therapy has emerged as an alternative treatment option to reduce the onset of RE, including invasive neuromodulation techniques such as vagus nerve stimulation, deep brain stimulation, and reactive nerve stimulation, as well as non-invasive neuroregulatory techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, and transcranial ultrasound stimulation. This paper reviews the basic introduction, key elements and clinical research of neuroregulation technology in RE, aiming to evaluate the scientific basis for the application of neural regulation technology in RE patients and provide ideas for developing appropriate RE treatment plans.

表1 侵入性神经调控技术基本情况汇总
Tab.1 Summary of the basic situation of invasive neural modulation techniques
治疗方式 治疗机制 刺激靶点 刺激模式 适用年龄 适应证 禁忌证 不良反应
VNS[19,20,21] 通过刺激颈部迷走神经,间接调节大脑活动,减少癫痫发作频率和严重程度 颈部迷走神经 周期性刺激 通常适用于4岁及以上患者(部分低龄儿童可考虑) 共同点:(1)RE;(2)未发现可治疗的癫痫病因,或针对病因治疗失败;同时满足以上2项 特定癫痫类型:局灶性、全面性癫痫、Lennox-Gastaut综合征) 共同点:(1)全身一般情况差,不能耐受手术;(2)特异性排异体质,不能耐受异物植入;(3)严重精神疾病/认知障碍;(4)无法接受长期随访的疾患满足以上任意一项 双侧迷走神经损伤或切断史,植入部位存在局部感染 声音嘶哑或咳嗽,下面部无力,颈部不适或疼痛,射频相关并发症(感染、导线断裂等)
DBS[27,28,31] 通过在大脑深部特定区域施加电荷来调节神经网络活动,抑制癫痫发作 特定脑区(如丘脑前核、丘脑中央中核、丘脑底核) 持续性或间歇性刺激 通常适用于18岁以上患者(部分患儿已受试) 特定癫痫类型:局灶性、Lennox-Gastaut综合征 颅内感染 手术相关风险(出血、感染等),刺激相关不良反应(如情绪改变、感觉异常),设备相关并发症(如电池移位、电池耗尽)
RNS[39,40,41] 通过实时分析多通道皮层电信号判断患者癫痫样活动时触发刺激脉冲,抑制癫痫发作 直接针对癫痫灶或异常放电区域 仅在检测到异常脑活动时触发刺激 通常适用于18岁以上患者(部分患儿已受试) 特定癫痫类型:双侧海马硬化和皮层功能区引起的癫痫发作 颅内感染、多灶性癫痫  
表2 非侵入性神经调控技术基本情况汇总
Tab.2 Summary of the basic situation of non-invasive neuroregulation techniques
治疗方式 治疗机制 刺激靶点 刺激精度 治疗方案 适应证 禁忌证 不良反应
TMS[48,49,50,51,52,53,54,55] 利用电磁脉冲或交变磁场来兴奋或抑制异常放电 大脑皮层(深度约2~3 cm) 较高,可精确定位皮层区域 20~40 min/次,1次/d,连续数周 共同点:(1)RE;(2)局灶性癫痫;同时满足以上两项 皮质起源局灶癫痫性癫痫,癫痫术前评估(功能定位) 共同点:(1)颅内金属植入物;(2)癫痫发作风险极高;符合以上任意一项 严重心脏病,颅骨缺损或颅内压增高 头痛、头皮不适、罕见癫痫发作(高频刺激时)、听力损伤(需佩戴耳塞)
tDCS[56,57,58,59,60,61,62] 通过头皮传递微弱电流改变神经元膜电位,调节大脑皮层兴奋性,抑制癫痫发作 大脑皮层(深度约1~2 cm) 较低,刺激范围较广 20~30 min/次,1次/d,连续数周 皮质起源局灶癫痫性癫痫,癫痫术前评估(研究阶段) 头皮损伤或感染 头痛,皮肤刺激或灼伤,罕见癫痫发作(高强度刺激时)
TUS[64,65,66,67,68,69] 利用低频超声波穿透颅骨,直接作用于深部脑区,调节神经活动,抑制异常放电 穿透颅骨,直接作用于深部脑区 较高,可精确定位深部脑区 10~30 min/次,1次/d,连续数周 皮质或深部起源局灶癫痫性癫痫,深部癫痫灶 颅骨缺损或颅内压增高 头痛,头皮不适,潜在组织损伤(高强度刺激时)
[1]
Falco-Walter J. Epilepsy-definition, classification, pathophysiology, and epidemiology[J]. Semin Neurol, 2020, 40(6): 617-623. DOI: 10.1055/s-0040-1718719.
[2]
GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the global burden of disease study 2016[J]. Lancet Neurol, 2019, 18(4): 357-375. DOI: 10.1016/s1474-4422(18)30454-x.
[3]
Aaberg KM, Surén P, Søraas CL, et al. Seizures, syndromes, and etiologies in childhood epilepsy: the International League Against Epilepsy 1981, 1989, and 2017 classifications used in a population- based cohort[J]. Epilepsia, 2017, 58(11): 1880-1891. DOI: 10.1111/epi.13913.
[4]
Liu S, Yu W, Lyu Y. The causes of new-onset epilepsy and seizures in the elderly[J]. Neuropsychiatr Dis Treat, 2016, 12: 1425-1434. DOI: 10.2147/ndt.S107905.
[5]
Gonzalez-Giraldo E, Sullivan JE. Advances in the treatment of drug-resistant pediatric epilepsy[J]. Semin Neurol, 2020, 40(2): 257-262. DOI: 10.1055/s-0040-1702941.
[6]
Abdel-Mannan O, Sutcliffe AG. A national surveillance study of childhood epilepsy mortality in the UK and Ireland[J]. Eur J Neurol, 2020, 27(2): 327-333. DOI: 10.1111/ene.14081.
[7]
Chen Z, Brodie MJ, Liew D, et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study[J]. JAMA Neurol, 2018, 75(3): 279-286. DOI: 10.1001/jamaneurol.2017.3949.
[8]
Al-Kaylani M, Konrad P, Lazenby B, et al. Seizure freedom off antiepileptic drugs after temporal lobe epilepsy surgery[J]. Seizure, 2007, 16(2): 95-98. DOI: 10.1016/j.seizure.2006.10.007.
[9]
Ryvlin P, Rheims S, Hirsch LJ, et al. Neuromodulation in epilepsy: state-of-the-art approved therapies[J]. Lancet Neurol, 2021, 20(12): 1038-1047. DOI: 10.1016/s1474-4422(21)00300-8.
[10]
Jiao D, Xu L, Gu Z, et al. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies[J]. Neural Regen Res, 2025, 20(4): 917-935. DOI: 10.4103/nrr.Nrr-d-23-01444.
[11]
Muthiah N, Joseph B, Varga G, et al. Investigation of the effectiveness of vagus nerve stimulation for pediatric drug-resistant epilepsies secondary to nonaccidental trauma[J]. Childs Nerv Syst, 2023, 39(5): 1201-1206. DOI: 10.1007/s00381-022-05817-9.
[12]
Bauer S, Baier H, Baumgartner C, et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02)[J]. Brain Stimul, 2016, 9(3): 356-363. DOI: 10.1016/j.brs.2015.11.003.
[13]
Hachem LD, Wong SM, Ibrahim GM. The vagus afferent network: emerging role in translational connectomics[J]. Neurosurg Focus, 2018, 45(3): E2. DOI: 10.3171/2018.6.Focus18216.
[14]
Jaseja H. Eeg-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: clinical neurophysiological evidence[J]. Med Hypotheses, 2010, 74(5): 855-856. DOI: 10.1016/j.mehy.2009.11.031.
[15]
Warsi NM, Yan H, Wong SM, et al. Vagus nerve stimulation modulates phase-amplitude coupling in thalamic local field potentials[J]. Neuromodulation, 2023, 26(3): 601-606. DOI: 10.1016/j.neurom.2022.05.001.
[16]
Ibrahim GM, Sharma P, Hyslop A, et al. Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy[J]. Neuroimage Clin, 2017, 16: 634-642. DOI: 10.1016/j.nicl.2017.09.015.
[17]
Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First international vagus nerve stimulation study group[J]. Epilepsia, 1994, 35(3): 616-626. DOI: 10.1111/j.1528-1157.1994.tb02482.x.
[18]
Handforth A, DeGiorgio CM, Schachter SC, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial[J]. Neurology, 1998, 51(1): 48-55. DOI: 10.1212/wnl.51.1.48.
[19]
Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response[J]. J Neurosurg, 2011, 115(6): 1248-1255. DOI: 10.3171/2011.7.Jns11977.
[20]
Jain P, Arya R. Vagus nerve stimulation and seizure outcomes in pediatric refractory epilepsy: systematic review and meta-analysis[J]. Neurology, 2021, 96(22): 1041-1051. DOI: 10.1212/wnl.0000000000012030.
[21]
Haneef Z, Skrehot HC. Neurostimulation in generalized epilepsy: a systematic review and meta-analysis[J]. Epilepsia, 2023, 64(4): 811-820. DOI: 10.1111/epi.17524.
[22]
Suresh H, Mithani K, Brar K, et al. Brainstem associated somatosensory evoked potentials and response to vagus nerve stimulation: an investigation of the vagus afferent network[J]. Front Neurol, 2021, 12: 768539. DOI: 10.3389/fneur.2021.768539.
[23]
De Taeye L, Vonck K, van Bochove M, et al. The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy[J]. Neurotherapeutics, 2014, 11(3): 612-622. DOI: 10.1007/s13311-014-0272-3.
[24]
Piper RJ, Richardson RM, Worrell G, et al. Towards network-guided neuromodulation for epilepsy[J]. Brain, 2022, 145(10): 3347-3362. DOI: 10.1093/brain/awac234.
[25]
Warsi NM, Yan H, Suresh H, et al. The anterior and centromedian thalamus: anatomy, function, and dysfunction in epilepsy[J]. Epilepsy Res, 2022, 182: 106913. DOI: 10.1016/j.eplepsyres.2022.106913.
[26]
Salanova V, Sperling MR, Gross RE, et al. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy[J]. Epilepsia, 2021, 62(6): 1306-1317. DOI: 10.1111/epi.16895.
[27]
Sobstyl M, Konopko M, Wierzbicka A, et al. Deep brain stimulation of anterior nucleus and centromedian nucleus of thalamus in treatment for drug-resistant epilepsy[J]. Neurol Neurochir Pol, 2024, 58(3): 256-273. DOI: 10.5603/pjnns.98258.
[28]
Schaper F, Plantinga BR, Colon AJ, et al. Deep brain stimulation in epilepsy: a role for modulation of the mammillothalamic tract in seizure control?[J]. Neurosurgery, 2020, 87(3): 602-610. DOI: 10.1093/neuros/nyaa141.
[29]
Dalic LJ, Warren AEL, Bulluss KJ, et al. DBS of thalamic centromedian nucleus for Lennox-Gastaut syndrome (ESTEL Trial)[J]. Ann Neurol, 2022, 91(2): 253-267. DOI: 10.1002/ana.26280.
[30]
Agashe S, Burkholder D, Starnes K, et al. Centromedian nucleus of the thalamus deep brain stimulation for genetic generalized epilepsy: a case report and review of literature[J]. Front Hum Neurosci, 2022, 16: 858413. DOI: 10.3389/fnhum.2022.858413.
[31]
Park S, Permezel F, Agashe S, et al. Centromedian thalamic deep brain stimulation for idiopathic generalized epilepsy: connectivity and target optimization[J]. Epilepsia, 2024, 65(11): e197-e203. DOI: 10.1111/epi.18122.
[32]
Torres Diaz CV, González-Escamilla G, Ciolac D, et al. Network substrates of centromedian nucleus deep brain stimulation in generalized pharmacoresistant epilepsy[J]. Neurotherapeutics, 2021, 18(3): 1665-1677. DOI: 10.1007/s13311-021-01057-y.
[33]
Dalic LJ, Warren AEL, Young JC, et al. Cortex leads the thalamic centromedian nucleus in generalized epileptic discharges in Lennox-Gastaut syndrome[J]. Epilepsia, 2020, 61(10): 2214-2223. DOI: 10.1111/epi.16657.
[34]
Arzimanoglou A, French J, Blume WT, et al. Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology[J]. Lancet Neurol, 2009, 8(1): 82-93. DOI: 10.1016/s1474-4422(08)70292-8.
[35]
Warren AEL, Dalic LJ, Bulluss KJ, et al. The optimal target and connectivity for deep brain stimulation in Lennox-Gastaut syndrome[J]. Ann Neurol, 2022, 92(1): 61-74. DOI: 10.1002/ana.26368.
[36]
Khan M, Paktiawal J, Piper RJ, et al. Intracranial neuromodulation with deep brain stimulation and responsive neurostimulation in children with drug-resistant epilepsy: a systematic review[J]. J Neurosurg Pediatr, 2022, 29(2): 208-217. DOI: 10.3171/2021.8.Peds21201.
[37]
Starnes K, Miller K, Wong-Kisiel L, et al. A review of neurostimulation for epilepsy in pediatrics[J]. Brain Sci, 2019, 9(10): 283. DOI: 10.3390/brainsci9100283.
[38]
Worrell GA. Electrical brain stimulation for epilepsy and emerging applications[J]. J Clin Neurophysiol, 2021, 38(6): 471-477. DOI: 10.1097/wnp.0000000000000819.
[39]
Zou J, Chen H, Chen X, et al. Noninvasive closed-loop acoustic brain-computer interface for seizure control[J]. Theranostics, 2024, 14(15): 5965-5981. DOI: 10.7150/thno.99820.
[40]
Alcala-Zermeno JL, Starnes K, Gregg NM, et al. Responsive neurostimulation with low-frequency stimulation[J]. Epilepsia, 2023, 64(2): e16-e22. DOI: 10.1111/epi.17467.
[41]
Hachem LD, Yan H, Ibrahim GM. Invasive neuromodulation for the treatment of pediatric epilepsy[J]. Neurotherapeutics, 2019, 16(1): 128-133. DOI: 10.1007/s13311-018-00685-1.
[42]
Nunna RS, Borghei A, Brahimaj BC, et al. Responsive neurostimulation of the mesial temporal white matter in bilateral temporal lobe epilepsy[J]. Neurosurgery, 2021, 88(2): 261-267. DOI: 10.1093/neuros/nyaa381.
[43]
Burdette DE, Haykal MA, Jarosiewicz B, et al. Brain-responsive corticothalamic stimulation in the centromedian nucleus for the treatment of regional neocortical epilepsy[J]. Epilepsy Behav, 2020, 112: 107354. DOI: 10.1016/j.yebeh.2020.107354.
[44]
Burdette D, Mirro EA, Lawrence M, et al. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: a case series[J]. Epilepsia Open, 2021, 6(3): 611-617. DOI: 10.1002/epi4.12524.
[45]
Sisterson ND, Kokkinos V, Urban A, et al. Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalised epilepsy: initial case series[J]. J Neurol Neurosurg Psychiatry, 2022, 93(5): 491-498. DOI: 10.1136/jnnp-2021-327512.
[46]
Panov F, Ganaha S, Haskell J, et al. Safety of responsive neurostimulation in pediatric patients with medically refractory epilepsy[J]. J Neurosurg Pediatr, 2020, 26(5): 525-532. DOI: 10.3171/2020.5.Peds20118.
[47]
Roa JA, Abramova M, Fields M, et al. Responsive neurostimulation of the thalamus for the treatment of refractory epilepsy[J]. Front Hum Neurosci, 2022, 16: 926337. DOI: 10.3389/fnhum.2022.926337.
[48]
王圆圆,马磊,江文. 经颅磁刺激治疗药物难治性癫痫的研究进展[J]. 临床内科杂志, 2022, 39(11): 732-735. DOI: 10.3969/j.issn.1001-9057.2022.11.004.
[49]
Fregni F, Otachi PT, Do Valle A, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy[J]. Ann Neurol, 2006, 60(4): 447-455. DOI: 10.1002/ana.20950.
[50]
Tergau F, Neumann D, Rosenow F, et al. Can epilepsies be improved by repetitive transcranial magnetic stimulation?--interim analysis of a controlled study[J]. Suppl Clin Neurophysiol, 2003, 56: 400-405. DOI: 10.1016/s1567-424x(09)70244-2.
[51]
Seynaeve L, Devroye A, Dupont P, et al. Randomized crossover sham-controlled clinical trial of targeted low-frequency transcranial magnetic stimulation comparing a figure-8 and a round coil to treat refractory neocortical epilepsy[J]. Epilepsia, 2016, 57(1): 141-150. DOI: 10.1111/epi.13247.
[52]
Cooper YA, Pianka ST, Alotaibi NM, et al. Repetitive transcranial magnetic stimulation for the treatment of drug-resistant epilepsy: a systematic review and individual participant data meta-analysis of real-world evidence[J]. Epilepsia Open, 2018, 3(1): 55-65. DOI: 10.1002/epi4.12092.
[53]
Koc G, Gokcil Z, Bek S, et al. Effects of continuous theta burst transcranial magnetic stimulation on cortical excitability in patients with idiopathic generalized epilepsy[J]. Epilepsy Behav, 2017, 77: 26-29. DOI: 10.1016/j.yebeh.2017.09.011.
[54]
Tavakoli H, Heidarpanah A. Literature review of the efficacy of repetitive transcranial magnetic stimulation on epilepsy[J]. Iran J Child Neurol, 2023, 17(1): 9-28. DOI: 10.22037/ijcn.v17i2.38752.
[55]
Sudbrack-Oliveira P, Barbosa MZ, Thome-Souza S, et al. Transcranial direct current stimulation (tDCS) in the management of epilepsy: a systematic review[J]. Seizure, 2021, 86: 85-95. DOI: 10.1016/j.seizure.2021.01.020.
[56]
Azmoodeh S, Soleimani E, Issazadegan A. The effects of transcranial direct current stimulation on depression, anxiety, and stress in patients with epilepsy: a randomized clinical trial[J]. Iran J Med Sci, 2021, 46(4): 272-280. DOI: 10.30476/ijms.2020.83233.1215.
[57]
Assenza G, Campana C, Assenza F, et al. Cathodal transcranial direct current stimulation reduces seizure frequency in adults with drug-resistant temporal lobe epilepsy: a sham controlled study[J]. Brain Stimul, 2017, 10(2): 333-335. DOI: 10.1016/j.brs.2016.12.005.
[58]
Fregni F, Thome-Souza S, Nitsche MA, et al. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy[J]. Epilepsia, 2006, 47(2): 335-342. DOI: 10.1111/j.1528-1167.2006.00426.x.
[59]
Zoghi M, O'Brien TJ, Kwan P, et al. Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: a pilot randomized controlled trial[J]. Epilepsia Open, 2016, 1(3-4): 130-135. DOI: 10.1002/epi4.12020.
[60]
Auvichayapat N, Sinsupan K, Tunkamnerdthai O, et al. Transcranial direct current stimulation for treatment of childhood pharmacoresistant lennox-gastaut syndrome: a pilot study[J]. Front Neurol, 2016, 7: 66. DOI: 10.3389/fneur.2016.00066.
[61]
Yang D, Wang Q, Xu C, et al. Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: a randomized, double-blind, sham-controlled, and three-arm parallel multicenter study[J]. Brain Stimul, 2020, 13(1): 109-116. DOI: 10.1016/j.brs.2019.09.006.
[62]
Tekturk P, Erdogan ET, Kurt A, et al. The effect of transcranial direct current stimulation on seizure frequency of patients with mesial temporal lobe epilepsy with hippocampal sclerosis[J]. Clin Neurol Neurosurg, 2016, 149: 27-32. DOI: 10.1016/j.clineuro.2016.07.014.
[63]
Kaye HL, San-Juan D, Salvador R, et al. Personalized, multisession, multichannel transcranial direct current stimulation in medication-refractory focal epilepsy: an open-label study[J]. J Clin Neurophysiol, 2023, 40(1): 53-62. DOI: 10.1097/wnp.0000000000000838.
[64]
Blackmore J, Shrivastava S, Sallet J, et al. Ultrasound neuromodulation: a review of results, mechanisms and safety[J]. Ultrasound Med Biol, 2019, 45(7): 1509-1536. DOI: 10.1016/j.ultrasmedbio.2018.12.015.
[65]
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function[J]. Neuron, 2023, 111(8): 1174-1190. DOI: 10.1016/j.neuron.2023.02.018.
[66]
Chen SG, Tsai CH, Lin CJ, et al. Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo[J]. Brain Stimul, 2020, 13(1): 35-46. DOI: 10.1016/j.brs.2019.09.011.
[67]
Chu PC, Yu HY, Lee CC, et al. Pulsed-focused ultrasound provides long-term suppression of epileptiform bursts in the kainic acid-induced epilepsy rat model[J]. Neurotherapeutics, 2022, 19(4): 1368-1380. DOI: 10.1007/s13311-022-01250-7.
[68]
Chu PC, Huang CS, Ing SZ, et al. Pulsed focused ultrasound reduces hippocampal volume loss and improves behavioral performance in the kainic acid rat model of epilepsy[J]. Neurotherapeutics, 2023, 20(2): 502-517. DOI: 10.1007/s13311-023-01363-7.
[69]
Stern JM, Spivak NM, Becerra SA, et al. Safety of focused ultrasound neuromodulation in humans with temporal lobe epilepsy[J]. Brain Stimul, 2021, 14(4): 1022-1031. DOI: 10.1016/j.brs.2021.06.003.
[70]
Lee CC, Chou CC, Hsiao FJ, et al. Pilot study of focused ultrasound for drug-resistant epilepsy[J]. Epilepsia, 2022, 63(1): 162-175. DOI: 10.1111/epi.17105.
[71]
Bubrick EJ, McDannold NJ, Orozco J, et al. Transcranial ultrasound neuromodulation for epilepsy: a pilot safety trial[J]. Brain Stimul, 2024, 17(1): 7-9. DOI: 10.1016/j.brs.2023.11.013.
[1] 杨筱涛, 罗蓉. 功能性近红外光谱技术在儿童注意缺陷多动障碍患儿治疗评估中的临床应用进展[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(03): 278-284.
[2] 杨林瑞, 陈仁吉. 言语治疗结合经颅磁刺激用于腭裂言语障碍康复的可行性分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 195-199.
[3] 张小凤, 孙晓琴, 黄军, 冀涵页, 杨辉, 侯智, 张春青. 标准前颞叶切除术治疗药物难治性癫痫[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 189-192.
[4] 荣毅, 田锦秀, 庞琦良, 成爱霞. 高频重复经颅磁刺激对脑卒中后中枢性疼痛的疗效观察[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 227-231.
[5] 于帆, 迟冰玉, 朱紫嫣, 许光旭. 经皮耳迷走神经刺激治疗脑卒中后吞咽障碍的疗效分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 214-219.
[6] 金渊媛, 刘丽美, 黄妍, 张军. 高频及低频重复经颅磁刺激对急性一氧化碳中毒迟发性脑病的疗效[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 199-207.
[7] 张黎, 高振轩. 脊髓电刺激治疗中枢性瘫痪[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 65-71.
[8] 赵坤, 陈凯天, 王悦, 杨霄, 葛芊芊, 韩帅, 张浩然, 孙培健, 刘傲轩, 何江弘. 脑深部太赫兹刺激对麻醉下恒河猴脑功能的调控作用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(02): 100-107.
[9] 王琦, 杨文强, 李爱民, 敖日格勒, 张瑜廉, 于炎冰, 张黎. 颈髓神经电刺激术治疗双侧基底节脑梗死后上肢痉挛状态一例报道[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 55-57.
[10] 管红梅, 吴邹仪, 杨元, 曾云. 经颅直流电刺激右侧小脑外侧对脑卒中后失语症语言功能的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 50-54.
[11] 张雅文, 杨玉慧, 张琦, 尹昱, 孙增鑫, 刘晓露, 吕佩源, 彭士航. 经颅直流电刺激治疗交叉性失语一例报道[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 58-60.
[12] 张雅文, 尹昱, 陈江龙, 杨玉慧, 吕红香, 张琦, 吕佩源. Theta爆发式经颅磁刺激治疗失语症的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 306-311.
[13] 张洪, 杨琪, 罗静, 唐茜, 邓鸿, 巩文艳, 王丽坤, 刘静, 艾双春. 多靶点神经调控技术对卒中后上肢运动功能障碍患者的脑网络功能连接研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 278-284.
[14] 白婧, 李笑冰, 白雅, 慕亚倩, 郭欣, 刘学东. 多系统萎缩的神经调控应用进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 239-243.
[15] 武继敏, 袁春雨, 王鲁佳, 陈伟霞, 李晓东, 马丽虹. 重复经颅磁刺激治疗脑卒中后中枢性疼痛的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 182-186.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?