[1] |
Falco-Walter J. Epilepsy-definition, classification, pathophysiology, and epidemiology[J]. Semin Neurol, 2020, 40(6): 617-623. DOI: 10.1055/s-0040-1718719.
|
[2] |
GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the global burden of disease study 2016[J]. Lancet Neurol, 2019, 18(4): 357-375. DOI: 10.1016/s1474-4422(18)30454-x.
|
[3] |
Aaberg KM, Surén P, Søraas CL, et al. Seizures, syndromes, and etiologies in childhood epilepsy: the International League Against Epilepsy 1981, 1989, and 2017 classifications used in a population- based cohort[J]. Epilepsia, 2017, 58(11): 1880-1891. DOI: 10.1111/epi.13913.
|
[4] |
Liu S, Yu W, Lyu Y. The causes of new-onset epilepsy and seizures in the elderly[J]. Neuropsychiatr Dis Treat, 2016, 12: 1425-1434. DOI: 10.2147/ndt.S107905.
|
[5] |
Gonzalez-Giraldo E, Sullivan JE. Advances in the treatment of drug-resistant pediatric epilepsy[J]. Semin Neurol, 2020, 40(2): 257-262. DOI: 10.1055/s-0040-1702941.
|
[6] |
Abdel-Mannan O, Sutcliffe AG. A national surveillance study of childhood epilepsy mortality in the UK and Ireland[J]. Eur J Neurol, 2020, 27(2): 327-333. DOI: 10.1111/ene.14081.
|
[7] |
Chen Z, Brodie MJ, Liew D, et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study[J]. JAMA Neurol, 2018, 75(3): 279-286. DOI: 10.1001/jamaneurol.2017.3949.
|
[8] |
Al-Kaylani M, Konrad P, Lazenby B, et al. Seizure freedom off antiepileptic drugs after temporal lobe epilepsy surgery[J]. Seizure, 2007, 16(2): 95-98. DOI: 10.1016/j.seizure.2006.10.007.
|
[9] |
Ryvlin P, Rheims S, Hirsch LJ, et al. Neuromodulation in epilepsy: state-of-the-art approved therapies[J]. Lancet Neurol, 2021, 20(12): 1038-1047. DOI: 10.1016/s1474-4422(21)00300-8.
|
[10] |
Jiao D, Xu L, Gu Z, et al. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies[J]. Neural Regen Res, 2025, 20(4): 917-935. DOI: 10.4103/nrr.Nrr-d-23-01444.
|
[11] |
Muthiah N, Joseph B, Varga G, et al. Investigation of the effectiveness of vagus nerve stimulation for pediatric drug-resistant epilepsies secondary to nonaccidental trauma[J]. Childs Nerv Syst, 2023, 39(5): 1201-1206. DOI: 10.1007/s00381-022-05817-9.
|
[12] |
Bauer S, Baier H, Baumgartner C, et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02)[J]. Brain Stimul, 2016, 9(3): 356-363. DOI: 10.1016/j.brs.2015.11.003.
|
[13] |
Hachem LD, Wong SM, Ibrahim GM. The vagus afferent network: emerging role in translational connectomics[J]. Neurosurg Focus, 2018, 45(3): E2. DOI: 10.3171/2018.6.Focus18216.
|
[14] |
Jaseja H. Eeg-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: clinical neurophysiological evidence[J]. Med Hypotheses, 2010, 74(5): 855-856. DOI: 10.1016/j.mehy.2009.11.031.
|
[15] |
Warsi NM, Yan H, Wong SM, et al. Vagus nerve stimulation modulates phase-amplitude coupling in thalamic local field potentials[J]. Neuromodulation, 2023, 26(3): 601-606. DOI: 10.1016/j.neurom.2022.05.001.
|
[16] |
Ibrahim GM, Sharma P, Hyslop A, et al. Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy[J]. Neuroimage Clin, 2017, 16: 634-642. DOI: 10.1016/j.nicl.2017.09.015.
|
[17] |
Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, et al. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. First international vagus nerve stimulation study group[J]. Epilepsia, 1994, 35(3): 616-626. DOI: 10.1111/j.1528-1157.1994.tb02482.x.
|
[18] |
Handforth A, DeGiorgio CM, Schachter SC, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial[J]. Neurology, 1998, 51(1): 48-55. DOI: 10.1212/wnl.51.1.48.
|
[19] |
Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response[J]. J Neurosurg, 2011, 115(6): 1248-1255. DOI: 10.3171/2011.7.Jns11977.
|
[20] |
Jain P, Arya R. Vagus nerve stimulation and seizure outcomes in pediatric refractory epilepsy: systematic review and meta-analysis[J]. Neurology, 2021, 96(22): 1041-1051. DOI: 10.1212/wnl.0000000000012030.
|
[21] |
Haneef Z, Skrehot HC. Neurostimulation in generalized epilepsy: a systematic review and meta-analysis[J]. Epilepsia, 2023, 64(4): 811-820. DOI: 10.1111/epi.17524.
|
[22] |
Suresh H, Mithani K, Brar K, et al. Brainstem associated somatosensory evoked potentials and response to vagus nerve stimulation: an investigation of the vagus afferent network[J]. Front Neurol, 2021, 12: 768539. DOI: 10.3389/fneur.2021.768539.
|
[23] |
De Taeye L, Vonck K, van Bochove M, et al. The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy[J]. Neurotherapeutics, 2014, 11(3): 612-622. DOI: 10.1007/s13311-014-0272-3.
|
[24] |
Piper RJ, Richardson RM, Worrell G, et al. Towards network-guided neuromodulation for epilepsy[J]. Brain, 2022, 145(10): 3347-3362. DOI: 10.1093/brain/awac234.
|
[25] |
Warsi NM, Yan H, Suresh H, et al. The anterior and centromedian thalamus: anatomy, function, and dysfunction in epilepsy[J]. Epilepsy Res, 2022, 182: 106913. DOI: 10.1016/j.eplepsyres.2022.106913.
|
[26] |
Salanova V, Sperling MR, Gross RE, et al. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy[J]. Epilepsia, 2021, 62(6): 1306-1317. DOI: 10.1111/epi.16895.
|
[27] |
Sobstyl M, Konopko M, Wierzbicka A, et al. Deep brain stimulation of anterior nucleus and centromedian nucleus of thalamus in treatment for drug-resistant epilepsy[J]. Neurol Neurochir Pol, 2024, 58(3): 256-273. DOI: 10.5603/pjnns.98258.
|
[28] |
Schaper F, Plantinga BR, Colon AJ, et al. Deep brain stimulation in epilepsy: a role for modulation of the mammillothalamic tract in seizure control?[J]. Neurosurgery, 2020, 87(3): 602-610. DOI: 10.1093/neuros/nyaa141.
|
[29] |
Dalic LJ, Warren AEL, Bulluss KJ, et al. DBS of thalamic centromedian nucleus for Lennox-Gastaut syndrome (ESTEL Trial)[J]. Ann Neurol, 2022, 91(2): 253-267. DOI: 10.1002/ana.26280.
|
[30] |
Agashe S, Burkholder D, Starnes K, et al. Centromedian nucleus of the thalamus deep brain stimulation for genetic generalized epilepsy: a case report and review of literature[J]. Front Hum Neurosci, 2022, 16: 858413. DOI: 10.3389/fnhum.2022.858413.
|
[31] |
Park S, Permezel F, Agashe S, et al. Centromedian thalamic deep brain stimulation for idiopathic generalized epilepsy: connectivity and target optimization[J]. Epilepsia, 2024, 65(11): e197-e203. DOI: 10.1111/epi.18122.
|
[32] |
Torres Diaz CV, González-Escamilla G, Ciolac D, et al. Network substrates of centromedian nucleus deep brain stimulation in generalized pharmacoresistant epilepsy[J]. Neurotherapeutics, 2021, 18(3): 1665-1677. DOI: 10.1007/s13311-021-01057-y.
|
[33] |
Dalic LJ, Warren AEL, Young JC, et al. Cortex leads the thalamic centromedian nucleus in generalized epileptic discharges in Lennox-Gastaut syndrome[J]. Epilepsia, 2020, 61(10): 2214-2223. DOI: 10.1111/epi.16657.
|
[34] |
Arzimanoglou A, French J, Blume WT, et al. Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology[J]. Lancet Neurol, 2009, 8(1): 82-93. DOI: 10.1016/s1474-4422(08)70292-8.
|
[35] |
Warren AEL, Dalic LJ, Bulluss KJ, et al. The optimal target and connectivity for deep brain stimulation in Lennox-Gastaut syndrome[J]. Ann Neurol, 2022, 92(1): 61-74. DOI: 10.1002/ana.26368.
|
[36] |
Khan M, Paktiawal J, Piper RJ, et al. Intracranial neuromodulation with deep brain stimulation and responsive neurostimulation in children with drug-resistant epilepsy: a systematic review[J]. J Neurosurg Pediatr, 2022, 29(2): 208-217. DOI: 10.3171/2021.8.Peds21201.
|
[37] |
Starnes K, Miller K, Wong-Kisiel L, et al. A review of neurostimulation for epilepsy in pediatrics[J]. Brain Sci, 2019, 9(10): 283. DOI: 10.3390/brainsci9100283.
|
[38] |
Worrell GA. Electrical brain stimulation for epilepsy and emerging applications[J]. J Clin Neurophysiol, 2021, 38(6): 471-477. DOI: 10.1097/wnp.0000000000000819.
|
[39] |
Zou J, Chen H, Chen X, et al. Noninvasive closed-loop acoustic brain-computer interface for seizure control[J]. Theranostics, 2024, 14(15): 5965-5981. DOI: 10.7150/thno.99820.
|
[40] |
Alcala-Zermeno JL, Starnes K, Gregg NM, et al. Responsive neurostimulation with low-frequency stimulation[J]. Epilepsia, 2023, 64(2): e16-e22. DOI: 10.1111/epi.17467.
|
[41] |
Hachem LD, Yan H, Ibrahim GM. Invasive neuromodulation for the treatment of pediatric epilepsy[J]. Neurotherapeutics, 2019, 16(1): 128-133. DOI: 10.1007/s13311-018-00685-1.
|
[42] |
Nunna RS, Borghei A, Brahimaj BC, et al. Responsive neurostimulation of the mesial temporal white matter in bilateral temporal lobe epilepsy[J]. Neurosurgery, 2021, 88(2): 261-267. DOI: 10.1093/neuros/nyaa381.
|
[43] |
Burdette DE, Haykal MA, Jarosiewicz B, et al. Brain-responsive corticothalamic stimulation in the centromedian nucleus for the treatment of regional neocortical epilepsy[J]. Epilepsy Behav, 2020, 112: 107354. DOI: 10.1016/j.yebeh.2020.107354.
|
[44] |
Burdette D, Mirro EA, Lawrence M, et al. Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: a case series[J]. Epilepsia Open, 2021, 6(3): 611-617. DOI: 10.1002/epi4.12524.
|
[45] |
Sisterson ND, Kokkinos V, Urban A, et al. Responsive neurostimulation of the thalamus improves seizure control in idiopathic generalised epilepsy: initial case series[J]. J Neurol Neurosurg Psychiatry, 2022, 93(5): 491-498. DOI: 10.1136/jnnp-2021-327512.
|
[46] |
Panov F, Ganaha S, Haskell J, et al. Safety of responsive neurostimulation in pediatric patients with medically refractory epilepsy[J]. J Neurosurg Pediatr, 2020, 26(5): 525-532. DOI: 10.3171/2020.5.Peds20118.
|
[47] |
Roa JA, Abramova M, Fields M, et al. Responsive neurostimulation of the thalamus for the treatment of refractory epilepsy[J]. Front Hum Neurosci, 2022, 16: 926337. DOI: 10.3389/fnhum.2022.926337.
|
[48] |
|
[49] |
Fregni F, Otachi PT, Do Valle A, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy[J]. Ann Neurol, 2006, 60(4): 447-455. DOI: 10.1002/ana.20950.
|
[50] |
Tergau F, Neumann D, Rosenow F, et al. Can epilepsies be improved by repetitive transcranial magnetic stimulation?--interim analysis of a controlled study[J]. Suppl Clin Neurophysiol, 2003, 56: 400-405. DOI: 10.1016/s1567-424x(09)70244-2.
|
[51] |
Seynaeve L, Devroye A, Dupont P, et al. Randomized crossover sham-controlled clinical trial of targeted low-frequency transcranial magnetic stimulation comparing a figure-8 and a round coil to treat refractory neocortical epilepsy[J]. Epilepsia, 2016, 57(1): 141-150. DOI: 10.1111/epi.13247.
|
[52] |
Cooper YA, Pianka ST, Alotaibi NM, et al. Repetitive transcranial magnetic stimulation for the treatment of drug-resistant epilepsy: a systematic review and individual participant data meta-analysis of real-world evidence[J]. Epilepsia Open, 2018, 3(1): 55-65. DOI: 10.1002/epi4.12092.
|
[53] |
Koc G, Gokcil Z, Bek S, et al. Effects of continuous theta burst transcranial magnetic stimulation on cortical excitability in patients with idiopathic generalized epilepsy[J]. Epilepsy Behav, 2017, 77: 26-29. DOI: 10.1016/j.yebeh.2017.09.011.
|
[54] |
Tavakoli H, Heidarpanah A. Literature review of the efficacy of repetitive transcranial magnetic stimulation on epilepsy[J]. Iran J Child Neurol, 2023, 17(1): 9-28. DOI: 10.22037/ijcn.v17i2.38752.
|
[55] |
Sudbrack-Oliveira P, Barbosa MZ, Thome-Souza S, et al. Transcranial direct current stimulation (tDCS) in the management of epilepsy: a systematic review[J]. Seizure, 2021, 86: 85-95. DOI: 10.1016/j.seizure.2021.01.020.
|
[56] |
Azmoodeh S, Soleimani E, Issazadegan A. The effects of transcranial direct current stimulation on depression, anxiety, and stress in patients with epilepsy: a randomized clinical trial[J]. Iran J Med Sci, 2021, 46(4): 272-280. DOI: 10.30476/ijms.2020.83233.1215.
|
[57] |
Assenza G, Campana C, Assenza F, et al. Cathodal transcranial direct current stimulation reduces seizure frequency in adults with drug-resistant temporal lobe epilepsy: a sham controlled study[J]. Brain Stimul, 2017, 10(2): 333-335. DOI: 10.1016/j.brs.2016.12.005.
|
[58] |
Fregni F, Thome-Souza S, Nitsche MA, et al. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy[J]. Epilepsia, 2006, 47(2): 335-342. DOI: 10.1111/j.1528-1167.2006.00426.x.
|
[59] |
Zoghi M, O'Brien TJ, Kwan P, et al. Cathodal transcranial direct-current stimulation for treatment of drug-resistant temporal lobe epilepsy: a pilot randomized controlled trial[J]. Epilepsia Open, 2016, 1(3-4): 130-135. DOI: 10.1002/epi4.12020.
|
[60] |
Auvichayapat N, Sinsupan K, Tunkamnerdthai O, et al. Transcranial direct current stimulation for treatment of childhood pharmacoresistant lennox-gastaut syndrome: a pilot study[J]. Front Neurol, 2016, 7: 66. DOI: 10.3389/fneur.2016.00066.
|
[61] |
Yang D, Wang Q, Xu C, et al. Transcranial direct current stimulation reduces seizure frequency in patients with refractory focal epilepsy: a randomized, double-blind, sham-controlled, and three-arm parallel multicenter study[J]. Brain Stimul, 2020, 13(1): 109-116. DOI: 10.1016/j.brs.2019.09.006.
|
[62] |
Tekturk P, Erdogan ET, Kurt A, et al. The effect of transcranial direct current stimulation on seizure frequency of patients with mesial temporal lobe epilepsy with hippocampal sclerosis[J]. Clin Neurol Neurosurg, 2016, 149: 27-32. DOI: 10.1016/j.clineuro.2016.07.014.
|
[63] |
Kaye HL, San-Juan D, Salvador R, et al. Personalized, multisession, multichannel transcranial direct current stimulation in medication-refractory focal epilepsy: an open-label study[J]. J Clin Neurophysiol, 2023, 40(1): 53-62. DOI: 10.1097/wnp.0000000000000838.
|
[64] |
Blackmore J, Shrivastava S, Sallet J, et al. Ultrasound neuromodulation: a review of results, mechanisms and safety[J]. Ultrasound Med Biol, 2019, 45(7): 1509-1536. DOI: 10.1016/j.ultrasmedbio.2018.12.015.
|
[65] |
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function[J]. Neuron, 2023, 111(8): 1174-1190. DOI: 10.1016/j.neuron.2023.02.018.
|
[66] |
Chen SG, Tsai CH, Lin CJ, et al. Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo[J]. Brain Stimul, 2020, 13(1): 35-46. DOI: 10.1016/j.brs.2019.09.011.
|
[67] |
Chu PC, Yu HY, Lee CC, et al. Pulsed-focused ultrasound provides long-term suppression of epileptiform bursts in the kainic acid-induced epilepsy rat model[J]. Neurotherapeutics, 2022, 19(4): 1368-1380. DOI: 10.1007/s13311-022-01250-7.
|
[68] |
Chu PC, Huang CS, Ing SZ, et al. Pulsed focused ultrasound reduces hippocampal volume loss and improves behavioral performance in the kainic acid rat model of epilepsy[J]. Neurotherapeutics, 2023, 20(2): 502-517. DOI: 10.1007/s13311-023-01363-7.
|
[69] |
Stern JM, Spivak NM, Becerra SA, et al. Safety of focused ultrasound neuromodulation in humans with temporal lobe epilepsy[J]. Brain Stimul, 2021, 14(4): 1022-1031. DOI: 10.1016/j.brs.2021.06.003.
|
[70] |
Lee CC, Chou CC, Hsiao FJ, et al. Pilot study of focused ultrasound for drug-resistant epilepsy[J]. Epilepsia, 2022, 63(1): 162-175. DOI: 10.1111/epi.17105.
|
[71] |
Bubrick EJ, McDannold NJ, Orozco J, et al. Transcranial ultrasound neuromodulation for epilepsy: a pilot safety trial[J]. Brain Stimul, 2024, 17(1): 7-9. DOI: 10.1016/j.brs.2023.11.013.
|