切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2025, Vol. 15 ›› Issue (06) : 326 -332. doi: 10.3877/cma.j.issn.2095-123X.2025.06.002

基础研究

直流电刺激促进体外原代海马神经元突触样超微结构形成的研究
何霏1, 顾敬东2, 罗帅2, 刘益杰3, 缪芸1,()   
  1. 1200080 上海市第一人民医院康复医学科
    2201203 上海,上海中医药大学附属光华医院脊柱外科
    3200120 上海,上海中医药大学康复医学研究所
  • 收稿日期:2024-12-26 出版日期:2025-12-15
  • 通信作者: 缪芸

Study on the promotion of synaptic like ultrastructure formation in primary hippocampal neurons by direct current stimulation in vitro

Fei He1, Jingdong Gu2, Shuai Luo2, Yijie Liu3, Yun Miao1,()   

  1. 1Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai 200080, China
    2Department of Spine Surgery, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
    3Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
  • Received:2024-12-26 Published:2025-12-15
  • Corresponding author: Yun Miao
引用本文:

何霏, 顾敬东, 罗帅, 刘益杰, 缪芸. 直流电刺激促进体外原代海马神经元突触样超微结构形成的研究[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(06): 326-332.

Fei He, Jingdong Gu, Shuai Luo, Yijie Liu, Yun Miao. Study on the promotion of synaptic like ultrastructure formation in primary hippocampal neurons by direct current stimulation in vitro[J/OL]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2025, 15(06): 326-332.

目的

体外观察直流电刺激(DCS)对神经元生长及突触连接超微结构的影响。

方法

体外分离获得SD大鼠原代海马神经元并分为6组,分别施加0(对照组)、5、20、50、100及200 μA DCS进行干预,30 min/d,连续7 d。通过显微镜观察评估不同强度的恒定直流电干预第1、3、5、7天对神经元分化、突触生长长度及数量的影响;通过Western blot方法检测Synapsin和PSD95等突触蛋白表达;同时筛选体外DCS的最佳强度,并以此干预体外3D培养的神经元,通过神经突起生长染色检测海马神经元轴突生长活性;通过透射电镜技术评估在最适恒定DCS作用下体外培养的原代海马神经元的生长情况及对神经元之间形成突触连接结构的影响。

结果

镜下明场观察发现,不同强度DCS下随着干预天数的增加,细胞轴突长度和数量均有明显增加,50 μA DCS促进原代海马神经元在体外分化效果最优,且神经元轴突数量较多、轴突生长能力较强。Western blot结果显示,5、20、50、100及200 μA DCS干预神经元的PSD95和Synapsin蛋白表达水平均高于对照组,差异有统计学意义(P<0.05);其中50 μA DCS作用下原代海马神经元突触蛋白Synapsin和PSD95的表达水平显著高于其他组,提示50 μA为体外促进神经突触生长的最适电流强度。神经突起生长染色和透射电镜显示,50 μA DCS作用下3D培养的体外神经元的轴突生长活力强于对照组,且可以观察到更多的突触连接结构,包括类似增厚的膜结构和连接间隙。

结论

50 μA DCS可促进体外3D培养的原代海马神经元突触样超微结构形成,其机制可能与上调了突触蛋白Synapsin和PSD95的表达水平有关。

Objective

To observe the effects of direct current stimulation (DCS) on neuronal growth and synaptic connectivity ultrastructure in vitro.

Methods

Primary hippocampal neurons from SD rats were obtained by isolation in vitro and divided into 6 groups. Each group was subjected to DCS intervention at 0 (control group), 5, 20, 50, 100, and 200 μA, respectively, for 30 min per day, continuously for 7 d. The effects of constant DCS at different intensities on neuronal differentiation, synaptic growth length and number were evaluated by microscopy on days 1, 3, 5, and 7. Synaptic protein expression including Synapsin and PSD95 was detected by Western blot. The optimal DCS intensity was selected and applied to neurons cultured in a 3D system. Axonal growth activity in hippocampal neurons was detected by neurite growth staining; and the growth of primary hippocampal neurons as well as the formation of synaptic connections under optimal DCS were observed using transmission electron microscopy.

Results

Bright-field microscopy revealed that with increasing days of intervention, both the length and number of neuronal axons significantly increased under various DCS intensities. DCS at 50 μA better promoted the differentiation of primary hippocampal neurons in vitro, resulting in a higher number of axons and stronger axonal growth capacity. Western blot results showed that the expression levels of PSD95 and Synapsin proteins in neurons intervened with 5, 20, 50, 100, and 200 μA DCS were higher than those in the control group, and the differences were statistically significant (P<0.05); The expression levels of synaptic proteins Synapsin and PSD95 in primary hippocampal neurons under the action of 50 μA DCS were higher than those in other groups, indicating that 50 μA is the optimal current intensity for promoting synaptic growth in vitro. Neurite outgrowth staining and transmission electron microscopy demonstrated that under 50 μA DCS, neurons in 3D culture exhibited stronger axonal growth activity and more synaptic connection structures, including thickened membrane-like structures and synaptic clefts, compared to the control group.

Conclusions

Direct current stimulation at 50 μA promotes the formation of synapse-like ultrastructures in primary hippocampal neurons cultured in a 3D system in vitro, potentially through upregulating the expression of Synapsin and PSD95.

图1 不同强度DCS对原代海马神经元体外培养的影响不同强度DCS组细胞干预1、3、5、7 d的明场图片(箭头示神经元);DCS:直流电刺激
Fig.1 Effect of different intensities of DCS on the in vitro culture of primary hippocampal neurons
图2 不同DCS对原代海马神经元体外培养后突触蛋白和凋亡蛋白表达的影响(n=3)A:6组细胞突触相关蛋白PSD-95和Synapsin的表达及定量分析;B:6组细胞凋亡相关蛋白Caspase-3的表达及定量分析;与对照组比较,aP<0.05;DCS:直流电刺激
Fig.2 Effects of different DCS on the expression of synaptic proteins and apoptotic proteins in primary hippocampal neurons cultured in vitro (n=3)
图3 DCS对体外培养神经元轴突生长和活力的影响0、50 μA的DCS连续干预5 d后各组细胞明场图片及神经突起生长染色结果(箭头示神经元);DCS:直流电刺激
Fig.3 Effect of DCS on axonal growth and vitality of cultured neurons in vitro
图4 DCS促进原代海马神经元突触连接(n=4)0、50 μA的DCS连续干预5 d后细胞透射电镜结果(箭头示突触结构);DCS:直流电刺激
Fig.4 DCS promotes synaptic connections in primary hippocampal neurons (n=4)
[1]
Langille JJ, Brown RE. The synaptic theory of memory: a historical survey and reconciliation of recent opposition[J]. Front Syst Neurosci, 2018, 12: 52. DOI: 10.3389/fnsys.2018.00052.
[2]
Lansner A, Fiebig F, Herman P. Fast Hebbian plasticity and working memory[J]. Curr Opin Neurobiol, 2023, 83: 102809. DOI: 10.1016/j.conb.2023.102809.
[3]
Toda T, Parylak SL, Linker SB, et al. The role of adult hippocampal neurogenesis in brain health and disease[J]. Mol Psychiatry, 2019, 24(1): 67-87. DOI: 10.1038/s41380-018-0036-2.
[4]
Rebollo B, Telenczuk B, Navarro-Guzman A, et al. Modulation of intercolumnar synchronization by endogenous electric fields in cerebral cortex[J]. Sci Adv, 2021, 7(10): eabc7772. DOI: 10.1126/sciadv.abc7772.
[5]
Buch ER, Santarnecchi E, Antal A, et al. Effects of tDCS on motor learning and memory formation: a consensus and critical position paper[J]. Clin Neurophysiol, 2017, 128(4): 589-603. DOI: 10.1016/j.clinph.2017.01.004.
[6]
石林,李秉心,杨舟,等.脑部电刺激作用机制研究进展[J].中国微侵袭神经外科杂志, 2024, 28(6): 321-330. DOI: 10.11850/j.issn.1009-122X.2024.06.001.
[7]
Lu H, Shaner S, Otte E, et al. A microfluidic perspective on conventional in vitro transcranial direct current stimulation methods [J]. J Neurosci Methods, 2023, 385: 109761. DOI: 10.1016/j.jneumeth.2022.109761.
[8]
Pelletier SJ, Cicchetti F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models[J]. Int J Neuropsychopharmacol, 2014, 18(2): pyu047. DOI: 10.1093/ijnp/pyu047.
[9]
Kronberg G, Bridi M, Abel T, et al. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects[J]. Brain Stimul, 2017, 10(1): 51-58. DOI: 10.1016/j.brs.2016.10.001.
[10]
Sun Y, Lipton JO, Boyle LM, et al. Direct current stimulation induces mGluR5-dependent neocortical plasticity[J]. Ann Neurol, 2016, 80(2): 233-246. DOI: 10.1002/ana.24708.
[11]
Gordon J, Amini S, White MK. General overview of neuronal cell culture[J]. Methods Mol Biol, 2013, 1078: 1-8. DOI: 10.1007/978-1-62703-640-5_1.
[12]
Goshi N, Morgan RK, Lein PJ, et al. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation[J]. J Neuroinflammation, 2020, 17(1): 155. DOI: 10.1186/s12974-020-01819-z.
[13]
Orlando M, Schmitz D, Rosenmund C, et al. Calcium-independent Exo-endocytosis coupling at small central synapses[J]. Cell Rep, 2019, 29(12): 3767-3774.e3. DOI: 10.1016/j.celrep.2019.11.060.
[14]
Mobini S, Leppik L, Thottakkattumana Parameswaran V, et al. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells[J]. PeerJ, 2017, 5: e2821. DOI: 10.7717/peerj.2821.
[15]
封洲燕,余颖,曹嘉悦,等.大鼠海马神经元群体对于高频电刺激的响应[J].中国生物医学工程学报, 2014, 33(2): 186-193. DOI: 10.3969/j.issn.0258-8021.2014.02.008.
[16]
Qi S, Liu X, Yu J, et al. Temporally interfering electric fields brain stimulation in primary motor cortex of mice promotes motor skill through enhancing neuroplasticity[J]. Brain Stimul, 2024, 17(2): 245-257. DOI: 10.1016/j.brs.2024.02.014.
[17]
Mishra S, Peña JS, Redenti S, et al. A novel electro-chemotactic approach to impact the directional migration of transplantable retinal progenitor cells[J]. Exp Eye Res, 2019, 185: 107688. DOI: 10.1016/j.exer.2019.06.002.
[18]
汪红霞.星形胶质细胞源CXCL12减轻ROSC后海马相关认知功能障碍及神经元凋亡的机制[D].成都:四川大学, 2022.
[1] 阎文婷, 刘军兰, 姜军. 循环乳腺癌细胞体外培养技术应用于药物敏感性的个体化检测[J/OL]. 中华乳腺病杂志(电子版), 2015, 09(02): 152-153.
[2] 张大伟, 蔡明, 武康. 神经纤毛蛋白1在移植免疫耐受中的作用[J/OL]. 中华移植杂志(电子版), 2017, 11(01): 50-53.
[3] 梁梓明, 叶林森, 唐晖, 宋来恩, 顾世杰, 易述红. 基于生物信息学数据库探讨STX6基因在肝细胞癌中的表达及临床意义[J/OL]. 中华肝脏外科手术学电子杂志, 2020, 09(02): 191-195.
[4] 张洪, 杨琪, 刘静, 唐茜, 罗静, 艾海波, 靳棋卒, 巩文艳, 刘远明. 经颅直流电联合持续θ短阵快速脉冲刺激语言双模通路治疗脑卒中后非流畅性失语症的疗效观察[J/OL]. 中华神经创伤外科电子杂志, 2020, 06(05): 287-291.
[5] 郭航, 马亚群, 李海红, 马丽, 卢彦, 王筱君, 马玉龙. 星形胶质细胞在三方突触中对突触信息的加工处理和调控作用[J/OL]. 中华神经创伤外科电子杂志, 2019, 05(03): 182-185.
[6] 信连昌, 王景景, 符锋. 神经调控技术在难治性癫痫治疗中的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(04): 238-245.
[7] 张雅文, 杨玉慧, 张琦, 尹昱, 孙增鑫, 刘晓露, 吕佩源, 彭士航. 经颅直流电刺激治疗交叉性失语一例报道[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 58-60.
[8] 管红梅, 吴邹仪, 杨元, 曾云. 经颅直流电刺激右侧小脑外侧对脑卒中后失语症语言功能的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 50-54.
[9] 梁雪琴, 李娜, 潘芳芳, 张香玉, 段亚男. tDCS结合肌电生物反馈对脑梗死后偏瘫老年患者肢体功能、运动功能和动态姿势稳定性的影响[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 90-96.
[10] 姜佳慧, 毕鸿雁. 基于虚拟现实技术施经颅直流电刺激对脑卒中患者上肢功能影响的Meta分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 75-83.
[11] 张洪, 唐茜, 邓鸿, 艾海波, 靳棋卒, 刘静, 巩文艳, 杨琪. 经颅直流电刺激治疗因新冠肺炎疫情信息播散导致焦虑障碍的临床疗效观察[J/OL]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 237-241.
[12] 郭永坤, 戴宜武, 刘春颖, 白洋, 何江弘, 张辉. 经颅直流电刺激神经调控治疗慢性意识障碍的现状及前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2019, 09(03): 181-184.
[13] 刘涛, 聂坤. 脑内胰岛素的研究进展[J/OL]. 中华针灸电子杂志, 2017, 06(03): 102-106.
[14] 梁铮, 利嘉琦, 吕玉华, 蔡志梁, 晁艳, 周厚全, 卢燕君. 枸杞多糖对大鼠角膜缘干细胞体外增殖的影响研究[J/OL]. 中华临床实验室管理电子杂志, 2020, 08(04): 246-250.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?