切换至 "中华医学电子期刊资源库"

中华脑科疾病与康复杂志(电子版) ›› 2022, Vol. 12 ›› Issue (01) : 49 -53. doi: 10.3877/cma.j.issn.2095-123X.2022.01.008

综述

脑深部电刺激治疗强迫症的手术靶点研究进展
何伟斌1, 李宸辉1, 王高华2, 易伟1,()   
  1. 1. 430071 武汉,武汉大学人民医院神经外科
    2. 430071 武汉,武汉大学人民医院精神科
  • 收稿日期:2022-01-11 出版日期:2022-02-15
  • 通信作者: 易伟
  • 基金资助:
    武汉大学医学腾飞计划(TFLC2018001)

Current progress in surgical targets of deep brain stimulation for obsessive-compulsive disorder

Weibin He1, Chenhui Li1, Gaohua Wang2, Wei Yi1,()   

  1. 1. Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430071, China
    2. Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430071, China
  • Received:2022-01-11 Published:2022-02-15
  • Corresponding author: Wei Yi
引用本文:

何伟斌, 李宸辉, 王高华, 易伟. 脑深部电刺激治疗强迫症的手术靶点研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 49-53.

Weibin He, Chenhui Li, Gaohua Wang, Wei Yi. Current progress in surgical targets of deep brain stimulation for obsessive-compulsive disorder[J]. Chinese Journal of Brain Diseases and Rehabilitation(Electronic Edition), 2022, 12(01): 49-53.

约40%~60%的强迫症患者对药物、心理疗法和其他治疗方式多模式治疗后反应不佳或无效,最终进展为难治性强迫症。脑深部电刺激(DBS)可调节异常的皮质-纹状体-丘脑-皮质回路来减轻强迫症状。本文总结了不同DBS手术策略的最新进展,并对DBS对强迫症患者脑网络影响的神经影像学研究进行了系统归纳。

About 40%-60% obsessive-compulsive disorder patients respond poorly to multimodal comprehensive treatment including drugs, psychotherapy and other treatment methods, and further progress to refractory obsessive-compulsive disorder. Deep brain stimulation (DBS) can regulate the abnormal cortico-striato-thalamocortical circuit to reduce the symptoms of obsessive-compulsive disorder. This article summarizes the progress of different DBS surgical strategies for obsessive-compulsive disorder, and systematically reviewed the neuroimaging studies on the effects of DBS on the brain network of obsessive-compulsive disorder patients.

[30]
Tyagi H, Apergis-Schoute AM, Akram H, et al. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive-compulsive disorder: clinical and imaging evidence for dissociable effects[J]. Biol Psychiatry, 2019, 85(9): 726-734.
[31]
Hartmann CJ, Lujan JL, Chaturvedi A, et al. Tractography activation patterns in dorsolateral prefrontal cortex suggest better clinical responses in OCD DBS[J]. Front Neurosci, 2016, 9: 519.
[32]
Liebrand LC, Caan MWA, Schuurman PR, et al. Individual white matter bundle trajectories are associated with deep brain stimulation response in obsessive-compulsive disorder[J]. Brain Stimul, 2019, 12(2): 353-360.
[33]
Li N, Baldermann JC, Kibleur A, et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder[J]. Nat Commun, 2020, 11(1): 3364.
[34]
Smith AH, Choi KS, Waters AC, et al. Replicable effects of deep brain stimulation for obsessive-compulsive disorder[J]. Brain Stimul, 2021, 14(1): 1-3.
[35]
Mosley PE, Windels F, Morris J, et al. A randomised, double-blind, sham-controlled trial of deep brain stimulation of the bed nucleus of the stria terminalis for treatment-resistant obsessive-compulsive disorder[J]. Transl Psychiatry, 2021, 11(1): 190.
[36]
Johnson KA, Duffley G, Foltynie T, et al. Basal ganglia pathways associated with therapeutic pallidal deep brain stimulation for tourette syndrome[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2021, 6(10): 961-972.
[37]
Van Laere K, Nuttin B, Gabriels L, et al. Metabolic imaging of anterior capsular stimulation in refractory obsessive-compulsive disorder: a key role for the subgenual anterior cingulate and ventral striatum[J]. J Nucl Med, 2006, 47(5): 740-747.
[38]
Suetens K, Nuttin B, Gabriëls L, et al. Differences in metabolic network modulation between capsulotomy and deep-brain stimulation for refractory obsessive-compulsive disorder[J]. J Nucl Med, 2014, 55(6): 951-959.
[39]
Rauch SL, Dougherty DD, Malone D, et al. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder[J]. J Neurosurg, 2006, 104(4): 558-565.
[40]
Dougherty DD, Chou T, Corse AK, et al. Acute deep brain stimulation changes in regional cerebral blood flow in obsessive-compulsive disorder[J]. J Neurosurg, 2016, 125(5): 1087-1093.
[41]
Park HR, Kim IH, Kang H, et al. Electrophysiological and imaging evidence of sustained inhibition in limbic and frontal networks following deep brain stimulation for treatment refractory obsessive compulsive disorder[J]. PLoS One, 2019, 14(7): e0219578.
[42]
Le Jeune F, Vérin M, N’Diaye K, et al. Decrease of prefrontal metabolism after subthalamic stimulation in obsessive-compulsive disorder: a positron emission tomography study[J]. Biol Psychiatry, 2010, 68(11): 1016-1022.
[43]
Figee M, Luigjes J, Smolders R, et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder[J]. Nat Neurosci, 2013, 16(4): 386-387.
[44]
Senova S, Clair AH, Palfi S, et al. Deep brain stimulation for refractory obsessive-compulsive disorder: towards an individualized approach[J]. Front Psychiatry, 2019, 10: 905.
[45]
Boutet A, Gramer R, Steele CJ, et al. Neuroimaging technological advancements for targeting in functional neurosurgery[J]. Curr Neurol Neurosci Rep, 2019, 19(7): 42.
[1]
Nazeer A, Latif F, Mondal A, et al. Obsessive-compulsive disorder in children and adolescents: epidemiology, diagnosis and management[J]. Transl Pediatr, 2020, 9(Suppl 1): S76-S93.
[2]
Grassi G, Pallanti S. Current and up-and-coming pharmacotherapy for obsessive-compulsive disorder in adults[J]. Expert Opin Pharmacother, 2018, 19(14): 1541-1550.
[3]
Wu H, Hariz M, Visser-Vandewalle V, et al. Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy?[J]. Mol Psychiatry, 2021, 26(1): 60-65.
[4]
Hirschtritt ME, Bloch MH, Mathews CA. Obsessive-compulsive disorder: advances in diagnosis and treatment[J]. JAMA, 2017, 317(13): 1358-1367.
[5]
Baldermann JC, Melzer C, Zapf A, et al. Connectivity profile predictive of effective deep brain stimulation in obsessive-compulsive disorder[J]. Biol Psychiatry, 2019, 85(9): 735-743.
[6]
Bourne SK, Eckhardt CA, Sheth SA, et al. Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits[J]. Front Integr Neurosci, 2012, 6: 29.
[7]
Morishita T, Fayad SM, Goodman WK, et al. Surgical neuroanatomy and programming in deep brain stimulation for obsessive compulsive disorder[J]. Neuromodulation, 2014, 17(4): 312-319; discussion 319.
[8]
Okun MS, Mann G, Foote KD, et al. Deep brain stimulation in the internal capsule and nucleus accumbens region: responses observed during active and sham programming[J]. J Neurol Neurosurg Psychiatry, 2007, 78(3): 310-314.
[9]
Nuttin B, Cosyns P, Demeulemeester H, et al. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder[J]. Lancet, 1999, 354(9189): 1526.
[10]
Nuttin BJ, Gabriëls LA, Cosyns PR, et al. Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder[J]. Neurosurgery, 2003, 52(6): 1263-1272; discussion 1272-1274.
[11]
Abelson JL, Curtis GC, Sagher O, et al. Deep brain stimulation for refractory obsessive-compulsive disorder[J]. Biol Psychiatry, 2005, 57(5): 510-516.
[12]
Greenberg BD, Malone DA, Friehs GM, et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder[J]. Neuropsychopharmacology, 2006, 31(11): 2384-2393.
[13]
Goodman WK, Foote KD, Greenberg BD, et al. Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design[J]. Biol Psychiatry, 2010, 67(6): 535-542.
[14]
Greenberg BD, Gabriels LA, Malone DA Jr, et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience[J]. Mol Psychiatry, 2010, 15(1): 64-79.
[15]
Strominger NL, Demarest RJ, Laemle LB. The reticular formation and the limbic system[M]. 7th ed. Totowa NJ: Humana Press, 2012: 379-395.
[16]
Sturm V, Lenartz D, Koulousakis A, et al. The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders[J]. J Chem Neuroanat, 2003, 26(4): 293-239.
[17]
Denys D, Mantione M, Figee M, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder[J]. Arch Gen Psychiatry, 2010, 67(10): 1061-1068.
[18]
Fontaine D, Mattei V, Borg M, et al. Effect of subthalamic nucleus stimulation on obsessive-compulsive disorder in a patient with Parkinson disease. Case report[J]. J Neurosurg, 2004, 100(6): 1084-1086.
[19]
Mallet L, Polosan M, Jaafari N, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder[J]. N Engl J Med, 2008, 359(20): 2121-2134.
[20]
Theiss JD, Ridgewell C, McHugo M, et al. Manual segmentation of the human bed nucleus of the stria terminalis using 3T MRI[J]. Neuroimage, 2017, 146: 288-292.
[21]
Luyten L, Hendrickx S, Raymaekers S, et al. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder[J]. Mol Psychiatry, 2016, 21(9): 1272-1280.
[22]
Jennings JH, Sparta DR, Stamatakis AM, et al. Distinct extended amygdala circuits for divergent motivational states[J]. Nature, 2013, 496(7444): 224-228.
[23]
van den Munckhof P, Bosch DA, Mantione MH, et al. Active stimulation site of nucleus accumbens deep brain stimulation in obsessive-compulsive disorder is localized in the ventral internal capsule[J]. Acta Neurochir Suppl, 2013, 117: 53-59.
[24]
Jiménez F, Velasco F, Salín-Pascual R, et al. Neuromodulation of the inferior thalamic peduncle for major depression and obsessive compulsive disorder[J]. Acta Neurochir Suppl, 2007, 97(Pt 2): 393-398.
[25]
Lee DJ, Dallapiazza RF, De Vloo P, et al. Inferior thalamic peduncle deep brain stimulation for treatment-refractory obsessive-compulsive disorder: a phase 1 pilot trial[J]. Brain Stimul, 2019, 12(2): 344-352.
[26]
Azriel A, Farrand S, Di Biase M, et al. Tractography-guided deep brain stimulation of the anteromedial globus pallidus internus for refractory obsessive-compulsive disorder: case report[J]. Neurosurgery, 2020, 86(6): E558-E563.
[27]
Zhang XH, Li JY, Zhang YQ, et al. Deep brain stimulation of the globus pallidus internus in patients with intractable tourette syndrome: a 1-year follow-up study[J]. Chin Med J (Engl), 2016, 129(9): 1022-1027.
[28]
Coenen VA, Schumacher LV, Kaller C, et al. The anatomy of the human medial forebrain bundle: ventral tegmental area connections to reward-associated subcortical and frontal lobe regions[J]. Neuroimage Clin, 2018, 18: 770-783.
[29]
Coenen VA, Schlaepfer TE, Goll P, et al. The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder[J]. CNS Spectr, 2017, 22(3): 282-289.
[1] 王淑惠, 薛梅. 新生儿高胆红素血症所致脑损伤患儿的早期监测研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 634-642.
[2] 党圆圆, 杨艺, 夏小雨, 王勇, 陈雪玲, 何江弘. 脑深部电刺激治疗脑干出血后意识障碍一例报道[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 188-189.
[3] 党圆圆, 夏小雨, 杨艺, 刘楠, 单桐辉, 杜少鹏, 张志强, 何江弘. 全麻下单纯影像学引导的帕金森病丘脑底核脑深部电刺激手术的效果分析[J]. 中华神经创伤外科电子杂志, 2020, 06(06): 350-355.
[4] 于炎冰. 功能神经外科主要疾病的治疗策略与展望[J]. 中华神经创伤外科电子杂志, 2020, 06(01): 1-3.
[5] 赵继宗. 脑科学开启神经外科学新纪元[J]. 中华神经创伤外科电子杂志, 2019, 05(04): 193-195.
[6] 张建国. 脑深部电刺激治疗阿尔茨海默病的现状和进展[J]. 中华神经创伤外科电子杂志, 2018, 04(06): 379-381.
[7] 孙奥, 李文臣, 陈勃, 王海峰. 颅脑创伤后脑死亡判定辅助技术的研究进展[J]. 中华神经创伤外科电子杂志, 2018, 04(06): 371-373.
[8] 党圆圆, 赵虎林. 机器人辅助小脑齿状核脑深部电刺激植入术[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 320-320.
[9] 徐武, 姜成荣, 种玉龙, 梁维邦. 脑深部电刺激术治疗梅杰综合征的两年疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 365-369.
[10] 陈普建, 张璟, 陈芬, 陈怡伟, 余蓓蓓, 周春英. 双侧丘脑底核交叉电脉冲脑深部电刺激对帕金森病步态障碍的疗效观察[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 298-301.
[11] 赵继宗. 神经外科学创新发展愿景[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 257-259.
[12] 李文虎, 付帅, 武玉亮, 王磊, 孔凡强, 陈卫光, 边玉松, 陈永安, 丛大伟. 动脉瘤性蛛网膜下腔出血后认知功能障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(02): 115-119.
[13] 陆敬潮, 石鑫, 姜磊, 冯兆海, 郝玉军. 脑深部电极植入术治疗Meige综合征的疗效评价[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(01): 53-56.
[14] 徐如祥, 杨超, 陈强, 张洪钿. 间充质干细胞治疗阿尔茨海默病的现状与展望[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(01): 1-5.
[15] 刘澳, 周菁, 孙永兵, 和俊雅, 林新贝, 乔琦, 李中林, 张建成, 武肖玲, 邹智, 胡扬喜, 肖新广, 吕雪, 李昊, 李永丽. 减重代谢手术后神经影像改变与认知功能评估的研究进展[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 203-208.
阅读次数
全文


摘要